【限时免费】20天拿下华为OD笔试之 【前缀和】2023B-最大子矩阵和【欧弟算法】全网注释最详细分类最全的华为OD真题题解

文章目录

  • 题目描述与示例
    • 题目描述
    • 输入描述
    • 输出描述
    • 示例
      • 输入
      • 输出
      • 说明
  • 解题思路
    • 如何表示一个子矩阵
    • 暴力解法
    • 二维前缀和优化
    • 二维前缀和矩阵的构建
  • 代码
    • 解法一:二维前缀和
      • Python
      • Java
      • C++
      • 时空复杂度
    • 解法二:暴力解法(不推荐)
      • Python
      • Java
      • C++
      • 时空复杂度
  • 华为OD算法/大厂面试高频题算法练习冲刺训练

题目描述与示例

题目描述

给定一个二维整数矩阵,要在这个矩阵中。选出一个子矩阵,使得这个子矩阵内所有的数字和尽量大

我们把这个子矩阵称为 “和最大子矩阵”,子矩阵的选取原则,是原矩阵中一段相互连续的矩形区域

输入描述

输入的第一行包含两个整数N,M

(1 <= N, M <= 10)

表示一个 N 行 M 列的矩阵

下面有N行 每行有M个整数

同一行中每两个数字之间有一个空格

最后一个数字后面没有空格

所有的数字得在-1000 ~ 1000之间

输出描述

输出一行,一个数字。表示选出的“和最大子矩阵”内所有数字的和

示例

输入

3 4
-3 5 -1 5
 2 4 -2 4
-1 3 -1 3

输出

20

说明

一个3*4的矩阵中 后面3列的和为20,和最大

解题思路

如何表示一个子矩阵

一个子矩阵可以由四个参数决定,分别为上底、下底、左宽、右宽,分别用变量abcd表示的话,如下图中灰色区域为通过四个参数所确定的矩形。

如果我们想要枚举所有子矩阵,只需要分别枚举abcd,写一个4层嵌套的for循环即可。

for a in range(n):
     for b in range(a, n):
         for c in range(m):
             for d in range(c, m):
                pass

暴力解法

暴力解法是很容易想到的,我们只需要枚举所有的子矩阵,然后对每一个子矩阵进行矩阵内所有元素求和即可。其核心代码为

for a in range(n):
     for b in range(a, n):
         for c in range(m):
             for d in range(c, m):
                 submat_sum = 0
                 for i in range(a, b+1):
                     for j in range(c, d+1):
                         submat_sum += mat[i][j]
                 ans = max(submat_sum, ans)

注意到会出现6for循环嵌套,时间复杂度为 O ( n 3 m 3 ) O(n^3m^3) O(n3m3)。由于数据范围为(1 <= n, m <= 10),故取最大值时复杂度约为 O ( 1 0 6 ) O(10^6) O(106),无法通过全部用例,故应该思考如何优化。

二维前缀和优化

注意,该方法和LeetCode 304、二维区域和检索 - 矩阵不可变 是类似的。

注意到每一个子矩阵的计算都可以用以下方式进行拆解。

拆解后的四个区域具有一个共同的特点:它们的上底均为上边界、左宽均为左边界

因此需要考虑类似一维前缀和的方法,将所有的上底为上边界、左宽为左边界(即a = 0c = 0)的子矩阵的和提前记录在二维前缀和矩阵pre_sum_mat中。

pre_sum_mat是一个大小为(n+1)*(m+1)的矩阵,pre_sum_mat[i][j]表示以第0行、第0列为开头(取得到的开区间),第i行、第j列为结尾(取不到的闭区间)的子矩阵的和。

上述的四个区域的和,就可以分别使用pre_sum_mat[b+1][d+1]pre_sum_mat[b+1][c]pre_sum_mat[a][d+1]pre_sum_mat[a][c]来表示了。

这里对开/闭区间的理解是非常重要的,如果想不清楚的话,后面的代码很容易出错。如果把子矩阵用一种类似切片的方法表示(并不严谨的写法)为mat[a:b+1][c:d+1]。那么上述的分析过程可以写为

sum(mat[a:b+1][c:d+1])
= sum(mat[:b+1][:d+1]) + sum(mat[:a][:c]) - sum(mat[:b+1][:c]) - sum(mat[:a][:d+1])
= pre_sum_mat[b+1][d+1] + pre_sum_mat[a][c] - pre_sum_mat[b+1][c] - pre_sum_mat[a][d+1]

那么,在原矩阵mat中,分别以abcd为上底、下底、左宽、右宽的子矩阵的和,就可以记为

submat_sum = (pre_sum_mat[b+1][d+1] + pre_sum_mat[a][c] -
              pre_sum_mat[b+1][c] - pre_sum_mat[a][d+1])

上述计算的时间复杂度为O(1),因此这种做法规避了暴力解对子矩阵求和时出现的反复计算,降低了最内层求和时时间复杂度。如果把外部的循环体加上,代码为

for a in range(n):
    for b in range(a, n):
        for c in range(m):
            for d in range(c, m):
                submat_sum = pre_sum_mat[b+1][d+1] + pre_sum_mat[a][c] - \
                             pre_sum_mat[b+1][c] - pre_sum_mat[a][d+1]
                ans = max(submat_sum, ans)

如果不想让最内层的索引出现+1,则可以修改for循环的范围,代码变为

for a in range(n):
    for b in range(a+1, n+1):
        for c in range(m):
            for d in range(c+1, m+1):
                submat_sum = pre_sum_mat[b][d] + pre_sum_mat[a][c] - \
                             pre_sum_mat[b][c] - pre_sum_mat[a][d]
                ans = max(submat_sum, ans)

上述过程的时间复杂度为 O ( n 2 m 2 ) O(n^2m^2) O(n2m2)。当nm取最大值时复杂度约为 O ( 1 0 4 ) O(10^4) O(104),可以通过全部用例。

二维前缀和矩阵的构建

二维前缀和矩阵pre_sum_mat的构建也要用到类似上述的拆分过程,其核心代码如下

pre_sum_mat = [[0] * (m+1) for _ in range(n+1)]
for i in range(1, n+1):
    for j in range(1, m+1):
        pre_sum_mat[i][j] = pre_sum_mat[i-1][j] + pre_sum_mat[i][j-1] - \
                            pre_sum_mat[i-1][j-1] + mat[i-1][j-1]

要特别注意二维前缀和pre_sum_mat的大小,在两个维度上均比原矩阵矩阵mat1

该过程的时间复杂度为 O ( n m ) O(nm) O(nm)

代码

解法一:二维前缀和

Python

# 题目:2023B-最大子矩阵和
# 分值:200
# 作者:闭着眼睛学数理化
# 算法:二维前缀和
# 代码有看不懂的地方请直接在群上提问


from math import inf


n, m = map(int, input().split())
mat = list()
for _ in range(n):
    row = list(map(int, input().split()))
    mat.append(row)

# 构建二维前缀和数组
pre_sum_mat = [[0] * (m+1) for _ in range(n+1)]
for i in range(1, n+1):
    for j in range(1, m+1):
        pre_sum_mat[i][j] = pre_sum_mat[i-1][j] + pre_sum_mat[i][j-1] - \
                            pre_sum_mat[i-1][j-1] + mat[i-1][j-1]

# 初始化答案为负无穷小
ans = -inf

# 枚举上底a
for a in range(n):
    # 枚举下底b
    for b in range(a, n):
        # 枚举左宽c
        for c in range(m):
            # 枚举右宽d
            for d in range(c, m):
                # 此时四个参数能够表示一个子矩阵
                # 根据式子计算子矩阵和,更新ans
                submat_sum = pre_sum_mat[b+1][d+1] + pre_sum_mat[a][c] - \
                             pre_sum_mat[b+1][c] - pre_sum_mat[a][d+1]
                ans = max(submat_sum, ans)

print(ans)

Java

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int m = scanner.nextInt();
        int[][] mat = new int[n][m];

        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                mat[i][j] = scanner.nextInt();
            }
        }

        int[][] preSumMat = new int[n + 1][m + 1];

        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                preSumMat[i][j] = preSumMat[i - 1][j] + preSumMat[i][j - 1] - preSumMat[i - 1][j - 1] + mat[i - 1][j - 1];
            }
        }

        int ans = Integer.MIN_VALUE;

        for (int a = 0; a < n; a++) {
            for (int b = a; b < n; b++) {
                for (int c = 0; c < m; c++) {
                    for (int d = c; d < m; d++) {
                        int submatSum = preSumMat[b + 1][d + 1] + preSumMat[a][c] - preSumMat[b + 1][c] - preSumMat[a][d + 1];
                        ans = Math.max(submatSum, ans);
                    }
                }
            }
        }

        System.out.println(ans);
    }
}

C++

#include <iostream>
#include <vector>
#include <limits>

using namespace std;

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> mat(n, vector<int>(m));

    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> mat[i][j];
        }
    }

    vector<vector<int>> pre_sum_mat(n + 1, vector<int>(m + 1, 0));

    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            pre_sum_mat[i][j] = pre_sum_mat[i - 1][j] + pre_sum_mat[i][j - 1] - pre_sum_mat[i - 1][j - 1] + mat[i - 1][j - 1];
        }
    }

    int ans = numeric_limits<int>::min();

    for (int a = 0; a < n; a++) {
        for (int b = a; b < n; b++) {
            for (int c = 0; c < m; c++) {
                for (int d = c; d < m; d++) {
                    int submat_sum = pre_sum_mat[b + 1][d + 1] + pre_sum_mat[a][c] - pre_sum_mat[b + 1][c] - pre_sum_mat[a][d + 1];
                    ans = max(submat_sum, ans);
                }
            }
        }
    }

    cout << ans << endl;
    return 0;
}

时空复杂度

时间复杂度: O ( n 2 m 2 ) O(n^2m^2) O(n2m2)

空间复杂度: O ( n m ) O(nm) O(nm)。二维前缀和矩阵所占空间。

解法二:暴力解法(不推荐)

Python

# 题目:2023B-最大子矩阵和
# 分值:200
# 作者:闭着眼睛学数理化
# 算法:暴力解
# 代码有看不懂的地方请直接在群上提问


from math import inf


n, m = map(int, input().split())
mat = list()
for _ in range(n):
    row = list(map(int, input().split()))
    mat.append(row)


# 初始化答案为负无穷小
ans = -inf

for a in range(n):
     for b in range(a, n):
         for c in range(m):
             for d in range(c, m):
                 submat_sum = 0
                 for i in range(a, b+1):
                     for j in range(c, d+1):
                         submat_sum += mat[i][j]
                 ans = max(submat_sum, ans)

print(ans)

Java

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int m = scanner.nextInt();
        int[][] mat = new int[n][m];

        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                mat[i][j] = scanner.nextInt();
            }
        }

        int ans = Integer.MIN_VALUE;

        for (int a = 0; a < n; a++) {
            for (int b = a; b < n; b++) {
                for (int c = 0; c < m; c++) {
                    for (int d = c; d < m; d++) {
                        int submatSum = 0;
                        for (int i = a; i <= b; i++) {
                            for (int j = c; j <= d; j++) {
                                submatSum += mat[i][j];
                            }
                        }
                        ans = Math.max(submatSum, ans);
                    }
                }
            }
        }

        System.out.println(ans);
    }
}

C++

#include <iostream>
#include <vector>
#include <climits>

using namespace std;

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> mat(n, vector<int>(m));

    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> mat[i][j];
        }
    }

    int ans = INT_MIN;

    for (int a = 0; a < n; a++) {
        for (int b = a; b < n; b++) {
            for (int c = 0; c < m; c++) {
                for (int d = c; d < m; d++) {
                    int submatSum = 0;
                    for (int i = a; i <= b; i++) {
                        for (int j = c; j <= d; j++) {
                            submatSum += mat[i][j];
                        }
                    }
                    ans = max(submatSum, ans);
                }
            }
        }
    }

    cout << ans << endl;

    return 0;
}

时空复杂度

时间复杂度: O ( n 3 m 3 ) O(n^3m^3) O(n3m3)

空间复杂度: O ( 1 ) O(1) O(1)


华为OD算法/大厂面试高频题算法练习冲刺训练

  • 华为OD算法/大厂面试高频题算法冲刺训练目前开始常态化报名!目前已服务100+同学成功上岸!

  • 课程讲师为全网50w+粉丝编程博主@吴师兄学算法 以及小红书头部编程博主@闭着眼睛学数理化

  • 每期人数维持在20人内,保证能够最大限度地满足到每一个同学的需求,达到和1v1同样的学习效果!

  • 60+天陪伴式学习,40+直播课时,300+动画图解视频,300+LeetCode经典题,200+华为OD真题/大厂真题,还有简历修改、模拟面试、专属HR对接将为你解锁

  • 可上全网独家的欧弟OJ系统练习华子OD、大厂真题

  • 可查看链接 大厂真题汇总 & OD真题汇总(持续更新)

  • 绿色聊天软件戳 od1336了解更多

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/160877.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Springboot 项目启动类放置位置

文章目录 Springboot 项目启动类放置位置springboot 默认包扫描机制启动类放在特定位置springboot 启动注解理解配置启动类扫描特定的包1、 ComponentScan2、利用 SpringBootApplication 注解的 scanBasePackages 属性 Springboot 项目启动类放置位置 如果我们使用 IDEA 或者 …

常见面试题-MySQL的Explain执行计划

了解 Explain 执行计划吗&#xff1f; 答&#xff1a; explain 语句可以帮助我们查看查询语句的具体执行计划。 explain 查出来的各列含义如下&#xff1a; id&#xff1a;在一个大的查询语句中&#xff0c;每个 select 关键字都对应一个唯一的 id select_type&#xff1a;…

jdk1.8配置tomcat9教程

文章目录 前言报错&尝试解决运行 前言 最近在学习SpringMVC框架&#xff0c;但是里面需要用到Tocmat服务器。作为0基础Java选手&#xff0c;直接找了个视频里面的tomcat包下载。 里面的版本是apache-tomcat-8.5.68-windows-x64.zip的&#xff0c;然后就开始疯狂的各种博客…

巧用SqlServer数据库实现邮件自动发送功能

使用数据库发送邮件需要三个步骤&#xff0c;配置数据库的邮件服务、编写存储过程、设置SQL作业&#xff0c;接下来开始逐步分享&#xff1a; 配置数据库邮件&#xff1a; 在SqlServer左侧菜单栏中&#xff0c;找到管理页签中数据库邮件选项&#xff1a; 接下来开始配置数据库…

wpf devexpress自定义编辑器

打开前一个例子 步骤1-自定义FirstName和LastName编辑器字段 如果运行程序&#xff0c;会通知编辑器是空。对于例子&#xff0c;这两个未命名编辑器在第一个LayoutItem(Name)。和最终用户有一个访客左右编辑器查阅到First Name和Last Name字段&#xff0c;分别。如果你看到Go…

验证码案例 —— Kaptcha 插件介绍 后端生成验证码,前端展示并进行session验证(带完整前后端源码)

&#x1f9f8;欢迎来到dream_ready的博客&#xff0c;&#x1f4dc;相信你对这篇博客也感兴趣o (ˉ▽ˉ&#xff1b;) &#x1f4dc;表白墙/留言墙 —— 中级SpringBoot项目&#xff0c;MyBatis技术栈MySQL数据库开发&#xff0c;练手项目前后端开发(带完整源码) 全方位全步骤手…

力扣每日一题-数位和相等数对的最大和-2023.11.18

力扣每日一题&#xff1a;数位和相等数对的最大和 开篇 这道每日一题还是挺需要思考的&#xff0c;我绕晕了好久&#xff0c;根据题解的提示才写出来。 题目链接:2342.数位和相等数对的最大和 题目描述 代码思路 1.创建一个数组存储每个数位的数的最大值&#xff0c;创建一…

OpenShift 4 - 就地调整 Pod 资源使用量

《OpenShift / RHEL / DevSecOps 汇总目录》 说明&#xff1a;本文已经在 OpenShift 4.14 的环境中验证 文章目录 为什么需要就地调整 Pod 资源启动 InPlacePodVerticalScaling 特性实现就地调整 Pod 资源参考 为什么需要就地调整 Pod 资源 以往在 Kubernetes 中调整 Pod 的 …

CentOS 7搭建Gitlab流程

目录 1、查询docker镜像gitlab-ce 2、拉取镜像 3、查询已下载的镜像 4、新建gitlab文件夹 5、在gitlab文件夹下新建相关文件夹 6、创建运行gitlab的容器 7、查看docker容器 8、根据Linux地址访问gitlab 9、进入docker容器&#xff0c;设置用户名的和密码 10、登录git…

如何从回收站恢复已删除的文件

我们在各个领域都使用计算机。无论是专业工作还是个人工作&#xff0c;我们在生活中总能找到计算机的用途。因此&#xff0c;我们在很大程度上依赖于我们的计算机。计算机是办公室和企业部门使用的高效机器。 人们使用个人计算机发送电子邮件、创建文档、听音乐和观看视频等等…

企业要做大模型落地?建议进来看看这个榜单

机器幻觉问题&#xff0c;可能是未来相当长一段时间内悬浮在大模型领域上方的两片乌云之一。遥记半年前&#xff0c;LeCun 就曾断言&#xff1a;“单纯根据概率生成自回归的大语言模型&#xff0c;根本解决不了幻觉、错误的问题&#xff0c;GPT模型活不过5年”。 当然&#xff…

红队攻防之特殊场景上线cs和msf

倘见玉皇先跪奏&#xff1a;他生永不落红尘 本文首发于先知社区&#xff0c;原创作者即是本人 网络拓扑图 一、msf正向木马拿不出网域控shell msf生成木马 msfvenom -p windows/x64/meterpreter/bind_tcp lport4444 -f raw -o msf1.bin用msfvenom生成一个正向马传进去&…

cs与msf联动

实验环境 cs4.4(4.5版本不知道为啥实现不了) cs服务器与msf在同一台vps上 本地win7虚拟机 cs派生会话给msf 首先cs正常上线win7&#xff0c;这就不多说了&#xff0c;然后说如何将会话派生给msf cs准备 选择Foreign&#xff0c;这里可以选HTTP&#xff0c;也可以选HTTPS…

RK3568驱动指南|第七篇 设备树-第67章 of操作函数实验:获取属性

瑞芯微RK3568芯片是一款定位中高端的通用型SOC&#xff0c;采用22nm制程工艺&#xff0c;搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码&#xff0c;支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU&#xff0c;可用于轻量级人工…

springBoot中starter

springBoot项目中引入starter 项目引入xxljob&#xff0c;仅需要导入对应的starter包&#xff0c;即可进行快速开发 <dependency><groupId>com.ydl</groupId><artifactId>xxl-job-spring-boot-starter</artifactId><version>0.0.1-SNAPS…

训练模型报错RuntimeError: Input, output and indices must be on the current device

问题出现&#xff1a; 当我训练图网络模型时&#xff0c;源码默认使用cpu&#xff0c;查看后台性能运行&#xff0c;发现正在使用cpu训练&#xff0c;这大大降低了训练速率&#xff0c;并且增加了电脑负载。所以我决定将模型改造并训练放在GPU上运行。 我在train方法中&#xf…

Zabbix5.0部署

环境 主机名 IP 类型server01192.168.134.165zabbix-serverserver02 192.168.134.166zabbix-agent 官方部署文档 1 .安装yum源 [rootserver01 ~]# rpm -Uvh https://repo.zabbix.com/zabbix/5.0/rhel/7/x86_64/zabbix-rel…

2、LeetCode之两数相加

给你两个非空的链表&#xff0c;表示两个非负的整数。它们每位数字都是按照逆序的方式存储的&#xff0c;并且每个节点只能存储一位数字。请你将两个数相加&#xff0c;并以相同形式返回一个表示和的链表。你可以假设除了数字0之外&#xff0c;这两个数都不会以0开头。 输入&am…

Docker Volume: 实现容器间数据共享与持久化的利器

文章目录 Docker Volume的作用Docker Volume与容器内数据的比较优势劣势 Docker Volume的创建和管理创建Docker Volume管理Docker Volume 演示Docker Volume的挂载Docker Volume的生命周期安全性考虑与Docker Volume应用场景Docker Volume与多容器协作容器迁移与Docker Volume未…

一文带你了解QT Model/View框架的设计思想和实现机制

目录 1、QT Model/View框架简介 1.1、QT Model/View是什么&#xff1f; 1.2、QT Model/View框架核心思想 1.3、Model/View框架工作机制 1.4、Model/View框架的类 2、Model 2.1模型简介 2.2、模型索引 2.3、数据角色 2.4、QStringListModel 2.5、QFileSystemModel 2…