Python | 机器学习之SVM支持向量机

🌈个人主页:Sarapines Programmer
🔥 系列专栏:《人工智能奇遇记》
🔖少年有梦不应止于心动,更要付诸行动。

目录结构


1. 机器学习之SVM支持向量机概念

1.1 机器学习

1.2 SVM支持向量机

2. SVM支持向量机算法

2.1 实验目的

2.2 实验准备

2.3 实验原理

2.4 实验内容

2.5 实验心得

致读者


1. 机器学习之SVM支持向量机概念

1.1 机器学习

传统编程要求开发者明晰规定计算机执行任务的逻辑和条条框框的规则。然而,在机器学习的魔法领域,我们向计算机系统灌输了海量数据,让它在数据的奔流中领悟模式与法则,自主演绎未来,不再需要手把手的指点迷津。

机器学习,犹如三千世界的奇幻之旅,分为监督学习、无监督学习和强化学习等多种类型,各具神奇魅力。监督学习如大师传道授业,算法接收标签的训练数据,探索输入与输出的神秘奥秘,以精准预测未知之境。无监督学习则是数据丛林的探险者,勇闯没有标签的领域,寻找隐藏在数据深处的秘密花园。强化学习则是一场与环境的心灵对话,智能体通过交互掌握决策之术,追求最大化的累积奖赏。

机器学习,如涓涓细流,渗透各行各业。在图像和语音识别、自然语言处理、医疗诊断、金融预测等领域,它在智慧的浪潮中焕发生机,将未来的可能性绘制得更加丰富多彩。

1.2 SVM支持向量机

支持向量机(Support Vector Machine,简称SVM)是一种广泛应用于分类和回归分析的监督学习算法。其基本原理是通过在特征空间中找到一个最优的超平面,将不同类别的数据点分隔开。

在二分类问题中,SVM的目标是找到一个能够将两类数据点分隔开的超平面,使得两侧距离最近的数据点到超平面的距离(即间隔)最大。这些最靠近超平面的数据点被称为支持向量。超平面的选择不仅要使得间隔最大,还要满足不同类别的数据点被正确分类,即位于超平面两侧的点应被分到不同的类别。

SVM可以通过核函数来处理非线性问题,将数据映射到高维空间,从而找到一个在高维空间中的超平面来完成分类。常用的核函数有线性核、多项式核、径向基核等。

SVM在实际应用中表现出色,尤其在数据维度较高、样本数量不是很大的情况下。它对于处理线性和非线性问题都有很好的效果,是一个强大而灵活的分类算法。

机器学习源文件icon-default.png?t=N7T8https://download.csdn.net/download/m0_57532432/88521177?spm=1001.2014.3001.5503


2. SVM支持向量机算法

2.1 实验目的

(1)加深对监督学习的理解和认识;

(2)掌握SVM分类器的设计方法;

(3)通过鸢尾花的花萼(sepal)和花瓣(petal)的长和宽,建立SVM分类器来判断样本属于山鸢尾(Iris Setosa)、变色鸢尾(Iris Versicolor)还是维吉尼亚鸢尾(Iris Virginica)。


2.2 实验准备

(1)安装机器学习必要库,如NumPy、Pandas、Scikit-learn等;

(2)配置环境用来运行 Python、Jupyter Notebook和相关库等内容。


2.3 实验原理

SVM(支持向量机)的实验原理基于其在特征空间中找到一个最优的超平面,以有效地对数据进行分类。以下是SVM实验的基本原理:

  1. 数据准备: 首先,需要一个带标签的训练数据集,其中包含了输入特征和相应的类别标签。

  2. 超平面的选择: SVM的目标是找到一个超平面,能够将不同类别的数据点分隔开,并使得两侧最靠近超平面的数据点到超平面的距离最大。这个最优的超平面可以通过求解一个凸优化问题来得到。

  3. 间隔最大化: SVM的关键思想是通过间隔最大化来确保分类的鲁棒性。间隔是指超平面两侧距离最近的数据点到超平面的距离。最优的超平面是使得间隔最大的超平面。

  4. 支持向量: 在最优超平面的两侧,存在一些被称为支持向量的数据点。这些支持向量是离超平面最近的数据点,它们对于定义最优超平面至关重要。

  5. 核函数: SVM可以通过核函数来处理非线性问题。核函数能够将数据映射到更高维的空间,使得在这个高维空间中存在一个线性超平面,从而在原始空间中完成非线性分类。

  6. 训练和预测: 通过解决优化问题,找到最优超平面的参数。在训练阶段,算法学习如何调整超平面的参数以实现最佳的分类。在预测阶段,新的数据点通过超平面的位置来进行分类。

SVM的实验原理主要依赖于数学优化的方法,通过数学模型和凸优化理论来找到一个最优的决策边界,以实现对数据的有效分类。


2.4 实验内容

使用Python手动实现SVM支持向量机代码如下:

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, precision_score, recall_score
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris

class SVM:
    def __init__(self, learning_rate=0.0001, lambda_param=0.1, num_iterations=2000):
        self.learning_rate = learning_rate
        self.lambda_param = lambda_param
        self.num_iterations = num_iterations
        self.W = None
        self.b = None

    def fit(self, X, y):
        y = np.where(y <= 0, -1, 1)
        n_samples, n_features = X.shape
        self.W = np.zeros(n_features)
        self.b = 0

        for _ in range(self.num_iterations):
            for idx, x_i in enumerate(X):
                condition = y[idx] * (np.dot(x_i, self.W) - self.b) >= 1
                if condition:
                    self.W -= self.learning_rate * (2 * self.lambda_param * self.W)
                else:
                    self.W -= self.learning_rate * (2 * self.lambda_param * self.W - np.dot(x_i, y[idx]))
                    self.b -= self.learning_rate * y[idx]

    def predict(self, X):
        linear_output = np.dot(X, self.W) - self.b
        return np.sign(linear_output)

1. 导入鸢尾花数据集;

# Step 1: 导入鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

2. 数据归一化

# Step 2: 数据归一化
scaler = StandardScaler()
X = scaler.fit_transform(X)

3. 训练集和测试数据集划分;

# Step 3: 训练集和测试数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2022)

4. 评价分类结果TP、FN、FP、TN以及精确率和召回率;

# Step 4: 评价分类结果
def evaluate_results(y_true, y_pred):
    confusion = confusion_matrix(y_true, y_pred)
    tp = confusion[1, 1]
    fn = confusion[1, 0]
    fp = confusion[0, 1]
    tn = confusion[0, 0]
    
    precision = precision_score(y_true, y_pred, average='weighted')
    recall = recall_score(y_true, y_pred, average='weighted')
    
    print("Confusion Matrix:")
    print(confusion)
    print("True Positives:", tp)
    print("False Negatives:", fn)
    print("False Positives:", fp)
    print("True Negatives:", tn)
    print("Precision:", precision)
    print("Recall:", recall)

# 创建SVM对象
svm = SVM()

5. 加入松弛因子后,与未加松弛因子之前效果做对比。

# Step 5: 加入松弛因子后的对比
svm_no_slack = SVM(lambda_param=0.0)  # 未加入松弛因子
svm_slack = SVM(lambda_param=101)     # 加入松弛因子


# 训练模型(未加入松弛因子)
svm_no_slack.fit(X_train, y_train)

# 预测(未加入松弛因子)
y_pred_slack = svm_no_slack.predict(X_test)

# 评价分类结果(未加入松弛因子)
print("=====未加入松弛因子=====")
evaluate_results(y_test, y_pred_slack)


# 训练模型(加入松弛因子)
svm_slack.fit(X_train, y_train)

# 预测(加入松弛因子)
y_pred_slack = svm_slack.predict(X_test)

# 评价分类结果(加入松弛因子)
print("=====加入松弛因子后=====")
evaluate_results(y_test, y_pred_slack)

实验结果

未加入松弛因子:

图5-1

加入松弛因子:

图5-2

完整代码如下:

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, precision_score, recall_score
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris


class SVM:
    def __init__(self, learning_rate=0.0001, lambda_param=0.1, num_iterations=2000):
        self.learning_rate = learning_rate
        self.lambda_param = lambda_param
        self.num_iterations = num_iterations
        self.W = None
        self.b = None

    def fit(self, X, y):
        y = np.where(y <= 0, -1, 1)
        n_samples, n_features = X.shape

        self.W = np.zeros(n_features)
        self.b = 0

        for _ in range(self.num_iterations):
            for idx, x_i in enumerate(X):
                condition = y[idx] * (np.dot(x_i, self.W) - self.b) >= 1
                if condition:
                    self.W -= self.learning_rate * (2 * self.lambda_param * self.W)
                else:
                    self.W -= self.learning_rate * (2 * self.lambda_param * self.W - np.dot(x_i, y[idx]))
                    self.b -= self.learning_rate * y[idx]

    def predict(self, X):
        linear_output = np.dot(X, self.W) - self.b
        return np.sign(linear_output)

# Step 1: 导入鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target

# Step 2: 数据归一化
scaler = StandardScaler()
X = scaler.fit_transform(X)

# Step 3: 训练集和测试数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=2022)

# Step 4: 评价分类结果
def evaluate_results(y_true, y_pred):
    confusion = confusion_matrix(y_true, y_pred)
    tp = confusion[1, 1]
    fn = confusion[1, 0]
    fp = confusion[0, 1]
    tn = confusion[0, 0]
    
    precision = precision_score(y_true, y_pred, average='weighted')
    recall = recall_score(y_true, y_pred, average='weighted')
    
    print("Confusion Matrix:")
    print(confusion)
    print("True Positives:", tp)
    print("False Negatives:", fn)
    print("False Positives:", fp)
    print("True Negatives:", tn)
    print("Precision:", precision)
    print("Recall:", recall)

# 创建SVM对象
svm = SVM()

# Step 5: 加入松弛因子后的对比
svm_no_slack = SVM(lambda_param=0.0)  # 未加入松弛因子
svm_slack = SVM(lambda_param=101)     # 加入松弛因子

# 训练模型(未加入松弛因子)
svm_no_slack.fit(X_train, y_train)

# 预测(未加入松弛因子)
y_pred_slack = svm_no_slack.predict(X_test)

# 评价分类结果(未加入松弛因子)
print("=====未加入松弛因子=====")
evaluate_results(y_test, y_pred_slack)


# 训练模型(加入松弛因子)
svm_slack.fit(X_train, y_train)

# 预测(加入松弛因子)
y_pred_slack = svm_slack.predict(X_test)

# 评价分类结果(加入松弛因子)
print("=====加入松弛因子后=====")
evaluate_results(y_test, y_pred_slack)

代码分析:

1.导入必要的库和模块

  1. numpy:用于数值计算的Python库。
  2. train_test_split:用于将数据集划分为训练集和测试集的函数。
  3. confusion_matrix、precision_score、recall_score:用于评估分类结果的指标。
  4. StandardScaler:用于数据归一化的类。
  5. load_iris:用于加载鸢尾花数据集的函数。

2.定义支持向量机类(SVM)

  1. __init__方法:初始化SVM对象的学习率(learning_rate)、正则化参数(lambda_param)和迭代次数(num_iterations)等属性。
  2. fit方法:用于训练SVM模型。接受特征数据(X)和标签(y)作为输入。该方法使用梯度下降法更新模型的权重(W)和偏置(b)。
  3. predict方法:用于预测新的样本。接受特征数据(X)作为输入,通过计算线性输出(linear_output)并对其进行符号化处理,返回预测结果。

3.加载鸢尾花数据集

  1. 使用load_iris函数加载鸢尾花数据集,将特征数据存储在X中,将标签存储在y中。

4.数据归一化

  1. 使用StandardScaler类创建一个归一化器对象(scaler)。
  2. 调用fit_transform方法对特征数据进行归一化,将归一化后的数据保存回X中。

5.训练集和测试数据集划分

  1. 使用train_test_split函数将数据集按照指定的比例划分为训练集和测试集。将训练集特征数据存储在X_train中,训练集标签存储在y_train中,测试集特征数据存储在X_test中,测试集标签存储在y_test中。

6.评价分类结果的函数

  1. 定义了一个名为evaluate_results的函数,用于评估分类结果。接受真实标签(y_true)和预测标签(y_pred)作为输入。
  2. 使用confusion_matrix函数计算混淆矩阵,并从中提取真阳性(tp)、假阴性(fn)、假阳性(fp)和真阴性(tn)的数量。
  3. 使用precision_score和recall_score函数计算精确率(precision)和召回率(recall)。

7.输出混淆矩阵、真阳性、假阴性、假阳性、真阴性、精确率和召回率的结果。

8.创建SVM对象

  1. 使用默认参数创建一个SVM对象(svm)。

9.加入松弛因子后的对比

  1. 创建两个SVM对象:一个没有加入松弛因子(svm_no_slack)的对象,另一个加入了松弛因子(svm_slack)的对象。
  2. lambda_param参数控制松弛因子的大小,0.0表示没有松弛因子,101表示加入了较大的松弛因子。

10.训练模型(未加入松弛因子)

  1. 使用训练集数据(X_train和y_train)调用fit方法训练未加入松弛因子的SVM模型。

11.预测(未加入松弛因子)

  1. 使用测试集数据(X_test)调用predict方法进行预测,将预测结果存储在y_pred_slack中。

12.评价分类结果(未加入松弛因子)

  1. 调用evaluate_results函数,传入真实标签(y_test)和预测标签(y_pred_slack),输出评价结果。

13.训练模型(加入松弛因子)

  1. 使用训练集数据(X_train和y_train)调用fit方法训练加入松弛因子的SVM模型。

14.预测(加入松弛因子)

  1. 使用测试集数据(X_test)调用predict方法进行预测,将预测结果存储在y_pred_slack中。

15.评价分类结果(加入松弛因子)

  1. 调用evaluate_results函数,传入真实标签(y_test)和预测标签(y_pred_slack),输出评价结果。

2.5 实验心得

通过本次支持向量机(SVM)算法实验,我在鸢尾花数据集上进行了分类任务,着重比较了加入松弛因子和未加入松弛因子情况下的分类结果,并深入研究了支持向量机的原理和参数设置。

支持向量机是用于分类和回归任务的强大算法,其核心思想是寻找最优的超平面,将不同类别的样本分隔开。在实验中,我分别训练了一个未加入松弛因子的SVM模型和一个引入了松弛因子的模型。

松弛因子的引入允许一些样本存在于超平面错误的一侧,从而提供一定的容错能力。这种机制使模型更具鲁棒性,能够容忍噪声或异常值的存在。通过设置不同的松弛因子参数,我探讨了模型的容错程度,实验中分别使用了松弛因子参数为0(未加入松弛因子)和101(加入较大松弛因子),并采用默认的学习率和迭代次数(0.0001和2000),对数据进行了归一化处理,确保特征具有相似的尺度,避免了某些特征对模型训练的主导影响。

在训练集和测试集划分方面,我采用了train_test_split函数,将数据集按照70%的训练集和30%的测试集进行划分,以确保模型在训练和测试阶段具有足够的数据支持。

实验结果显示,适度引入松弛因子可以提高模型的鲁棒性,使其更好地适应噪声或异常值。选择合适的松弛因子参数根据数据集的特点和任务要求,较小的参数适用于清晰数据,而较大的参数适用于复杂数据和存在噪声的情况。这次实验使我更深入了解了支持向量机的应用和参数调优。


致读者

风自火出,家人;君子以言有物而行有恒

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/160072.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

hahahaha发到这里吧

一大早上笑死我 恭喜在座的各位&#xff0c;一直以为这次比赛public和private排名会相差不大&#xff0c;结果前6有4个人都是从银牌歘一下上来的&#xff0c;想象地到他们看到结果时的喜悦

python引入自己不同目录的模块

1.目录结构 from manual_data.utils import delete_and_insert_center

ceph学习笔记

ceph ceph osd lspoolsrbd ls -p testpool#查看 ceph 集群中有多少个 pool,并且每个 pool 容量及利 用情况 rados dfceph -sceph osd tree ceph dfceph versionsceph osd pool lsceph osd crush rule dumpceph auth print-key client.adminceph orch host lsceph crash lsceph…

搞科研、写论文,如何正确使用GPT?AIGC技术解析、提示词工程高级技巧、AI绘图、ChatGPT/GPT4应用

目录 专题一 OpenAI开发者大会最新技术发展及最新功能应用 专题二 AIGC技术解析 专题三 提示词工程高级技巧 专题四 ChatGPT/GPT4的实用案例 专题五 让ChatGPT/GPT4成为你的论文助手 专题六 让ChatGPT/GPT4成为你的编程助手 专题七 让ChatGPT/GPT4进行数据处理 专题八 …

这就是不创业的最大的原因,机器视觉兄弟们创业要谨慎,为什么99.99%机器视觉公司老板是销售人员?

机器视觉公司&#xff0c;99%公司实行销售优先原则&#xff0c;企业老板99%从销售人员中产生。所以机器视觉兄弟们创业要谨慎。 企业的本质就是通过销售获得利润的组织&#xff0c;销售是立足之本&#xff0c;没有销售&#xff0c;创业就是耍流氓。因此&#xff0c;企业的一切…

CF1899B 250 Thousand Tons of TNT

题目链接 题目 题目大意 T T T 组测试数据 每组 n n n 个货物&#xff0c;第 i i i 个货物 的重量是 a i a_i ai​ 用k辆货车按顺序装这些货物&#xff0c;条件是每辆车上的货物个数都一样&#xff0c;也即是说 n n n 必须能被 k k k 整除&#xff0c; 求任意两辆车货物总…

Redis 访问控制列表(ACL)

Redis ACL 关于 Redis ACL与旧版本兼容ACL helpACL 配置模式redis.conf 配置模式外部 ACL File 配置模式 ACL 规则总结 关于 Redis ACL Redis ACL (访问控制列表) 是 Access Control List 的缩写&#xff0c;它允许某些连接在可以执行的命令和可以访问的密钥方面受到限制。它…

代码随想录算法训练营第五十八天丨 动态规划part18

739. 每日温度 思路 首先想到的当然是暴力解法&#xff0c;两层for循环&#xff0c;把至少需要等待的天数就搜出来了。时间复杂度是O(n^2) 那么接下来在来看看使用单调栈的解法。 什么时候用单调栈呢&#xff1f; 通常是一维数组&#xff0c;要寻找任一个元素的右边或者左边…

智能配电房管理系统

智能配电房管理系统依托电易云-智慧电力物联网&#xff0c;是一种集成了互联网、物联网、大数据、人工智能等先进技术的管理系统&#xff0c;专门用于配电房的智能化管理和运维。以下是智能配电房管理系统的主要功能和特点&#xff1a; 一、主要功能&#xff1a; 实时监测与数据…

SQL 的 AND、OR 和 NOT 运算符:条件筛选的高级用法

AND 运算符 SQL的AND运算符用于根据多个条件筛选记录&#xff0c;确保所有条件都为TRUE才返回记录。下面是AND运算符的基本语法&#xff1a; SELECT column1, column2, ... FROM table_name WHERE condition1 AND condition2 AND condition3 ...;column1, column2,等是您要选…

Go 语言数组基础教程 - 数组的声明、初始化和使用方法

数组用于在单个变量中存储相同类型的多个值&#xff0c;而不是为每个值声明单独的变量。 声明数组 在Go中&#xff0c;有两种声明数组的方式&#xff1a; 使用var关键字&#xff1a; 语法 var array_name [length]datatype{values} // 这里定义了长度 或者 var array_n…

Typora for Mac:打造全新文本编辑体验

Typora for Mac是一款与众不同的文本编辑器&#xff0c;它不仅拥有直观易用的界面&#xff0c;还融合了Markdown语法和富文本编辑的功能&#xff0c;为用户带来了前所未有的写作和编辑体验。 一、简洁明了的界面设计 Typora for Mac的界面简洁明了&#xff0c;让用户可以专注…

【科技素养】蓝桥杯STEMA 科技素养组模拟练习试卷F

1、常见的加密算法可以分为对称加密算法和非对称加密算法&#xff0c;以下关于它们的描述正确的是 A、AES是一种常见的非对称加密算法 B、凯撒密码是一种非对称加密 C、非对称加密算法的解密使用的秘钥与加密不同 D、对称加密算法无法被暴力破解 答案&#xff1a;C 2、12根…

我为什么开始写技术博客

今天没有技术文章&#xff0c;只是想聊聊认真做CSDN和公众号以来的一些感想。 1.为什么开启技术分享 我不算是一个聪明的人&#xff0c;没有过目不忘的本事&#xff0c;所以从工作开始就养成了做笔记的习惯&#xff1b; 最开始15、16年做模型开发&#xff0c;那时候环境其实就…

LINUX入门篇【6】----第一个LINUX小程序---进度条及相关知识讲解

前言&#xff1a; 本篇我们将开始尝试构建我们的第一个LINUX的小程序----进度条作为一个十分常见的程序&#xff0c;在我们之后的工程实践中也是需要多次运用&#xff0c;但是介于我们目前还没有去学习网络等方面的知识&#xff0c;没法独立的去利用程序去下载一个真正的程序&…

Humanoid Robotics Whole Body Control(WBC)全身控制

系列文章目录 文章目录 系列文章目录前言一、ROS —— 什么是全身控制&#xff1f;二、IEEE - RAS三、维也纳工业大学 —— 自动化与控制研究所&#xff08;ACIN&#xff09;四、IIt&#xff08;意大利技术研究院&#xff09; 前言 谷歌的几种解释 一、ROS —— 什么是全身控制…

PPT基础入门

目录 相关设置快捷键shift 快捷键Ctrl 快捷键Ctrl Shift 组合快捷键快捷键总结 相关设置 设置撤回次数 自动保存 图片压缩 字体嵌入&#xff1a;目的是在不同的电脑上保留已经设置好的字体 多格式导出 &#xff08;1&#xff09;可以导出PDF &#xff08;2&#xff09;可以导…

简单线性回归函数

简单线性回归函数 定义术语理解简单线性回归例子 定义 线性回归&#xff1a;利用线性回归方程中最小平方函数对一个或多个自变量和因变量之间关系进行建模的一个回归分析。该建模的目标为找到各个系数的最佳值让预测误差最小 简单线性回归&#xff1a;只有一个自变量的线性回…

2023.11.18 每日一题(AI自生成应用)【C++】【Python】【Java】【Go】 动态路径分析

目录 一、编程挑战&#xff1a;动态时间序列分析 实际应用&#xff1a; 实现提示&#xff1a; 二、实现 1. C 2. Python 3. JAVA 4. Go 一、编程挑战&#xff1a;动态时间序列分析 问题描述&#xff1a; 假设你是一名软件工程师&#xff0c;需要开发一个应用来分析和预…

贝茄莱BR AS实时数据采集功能

实时数据采集功能在PLC系统调试过程中&#xff0c;有助于调试人员对变量变化进行监测&#xff0c;通过波形对比&#xff0c;反应不同变量间的相互作用。该测试目的在于验证贝加莱系统组态软件的实时数据采集功能。 贝加莱系统组态软件提供Trace功能&#xff0c;连接PLC&#x…