Pytorch1.7复现PointNet++点云分割(含Open3D可视化)(文末有一个自己做的书缝识别项目代码)

  毕设需要,复现一下PointNet++的对象分类、零件分割和场景分割,找点灵感和思路,做个踩坑记录。

下载代码

https://github.com/yanx27/Pointnet_Pointnet2_pytorch
  我的运行环境是pytorch1.7+cuda11.0。

训练

  PointNet++代码能实现3D对象分类、对象零件分割和语义场景分割。

对象分类

  下载数据集ModelNet40,并存储在文件夹data/modelnet40_normal_resampled/

## e.g., pointnet2_ssg without normal features
python train_classification.py --model pointnet2_cls_ssg --log_dir pointnet2_cls_ssg
python test_classification.py --log_dir pointnet2_cls_ssg

## e.g., pointnet2_ssg with normal features
python train_classification.py --model pointnet2_cls_ssg --use_normals --log_dir pointnet2_cls_ssg_normal
python test_classification.py --use_normals --log_dir pointnet2_cls_ssg_normal

## e.g., pointnet2_ssg with uniform sampling
python train_classification.py --model pointnet2_cls_ssg --use_uniform_sample --log_dir pointnet2_cls_ssg_fps
python test_classification.py --use_uniform_sample --log_dir pointnet2_cls_ssg_fps
  • 主文件夹下运行代码python train_classification.py --model pointnet2_cls_ssg --log_dir pointnet2_cls_ssg时可能会报错:
    ImportError: cannot import name 'PointNetSetAbstraction'
    原因是pointnet2_cls_ssg.py文件import时的工作目录时models文件夹,但是实际运行的工作目录时models的上级目录,因此需要在pointnet2_cls_ssg.py里把from pointnet2_utils import PointNetSetAbstraction改成from models.pointnet2_utils import PointNetSetAbstraction

  参考README.md文件,分类不是我的主攻点,这里就略过了。

零件分割

  零件分割是将一个物体的各个零件分割出来,比如把椅子的椅子腿分出来。
  下载数据集ShapeNet,并存储在文件夹data/shapenetcore_partanno_segmentation_benchmark_v0_normal/
  运行也很简单:

## e.g., pointnet2_msg
python train_partseg.py --model pointnet2_part_seg_msg --normal --log_dir pointnet2_part_seg_msg
python test_partseg.py --normal --log_dir pointnet2_part_seg_msg

  shapenet数据集txt文件格式:前三个点是xyz,点云的位置坐标,后三个点是点云的法向信息,最后一个点是这个点所属的小类别,即1表示所属50个小类别中的第一个。

  写个代码用open3d可视化shapenet数据集的txt文件(随机配色):

import open3d as o3d
import numpy as np
'''
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(ROOT_DIR, 'data_utils'))
'''
 
txt_path = '/home/lin/CV_AI_learning/Pointnet_Pointnet2_pytorch-master/data/shapenetcore_partanno_segmentation_benchmark_v0_normal/02691156/1b3c6b2fbcf834cf62b600da24e0965.txt'
# 通过numpy读取txt点云
pcd = np.genfromtxt(txt_path, delimiter=" ")
 
pcd_vector = o3d.geometry.PointCloud()
# 加载点坐标
# txt点云前三个数值一般对应x、y、z坐标,可以通过open3d.geometry.PointCloud().points加载
# 如果有法线或颜色,那么可以分别通过open3d.geometry.PointCloud().normals或open3d.geometry.PointCloud().colors加载
pcd_vector.points = o3d.utility.Vector3dVector(pcd[:, :3])
pcd_vector.colors = o3d.utility.Vector3dVector(pcd[:, 3:6])
o3d.visualization.draw_geometries([pcd_vector])

  GPU内存不够减小一下batch_size。
  我这里训练了一下,接着代码的best_model.pth继续训练150轮,RTX3080单显卡训练一轮得六七分钟,150轮花了半天多的时间。
  网上的代码基本test一下分割的一些参数就结束了,没有做可视化,参考这篇blog做了一下结果的可视化:PointNet++分割预测结果可视化。这篇blog首先用网络将输入图像的预测结果存为txt文件,然后用Matplotlib做可视化,过程有点复杂了,用open3d做可视化比较简洁一点,代码如下:

import tqdm
import matplotlib
import torch
import os
import warnings
import numpy as np
import open3d as o3d
from torch.utils.data import Dataset
import pybullet as p
from models.pointnet2_part_seg_msg import get_model as pointnet2
import time

warnings.filterwarnings('ignore')
matplotlib.use("Agg")
def pc_normalize(pc):
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
    pc = pc / m
    return pc,centroid,m

def generate_pointcloud(color_image, depth_image,width=1280,height=720,fov=50,near=0.01,far=5):
    rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(color_image, depth_image,convert_rgb_to_intensity=False)
    intrinsic = o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.Kinect2DepthCameraDefault )

    aspect = width / height

    projection_matrix = p.computeProjectionMatrixFOV(fov, aspect, near, far)
    intrinsic.set_intrinsics(width=width, height=height, fx=projection_matrix[0]*width/2, fy=projection_matrix[5]*height/2, cx=width/2, cy=height/2)
    point_cloud = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, intrinsic)
    
    point_cloud.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
    return point_cloud

class PartNormalDataset(Dataset):
    def __init__(self, point_cloud, npoints=2500, normal_channel=False):
        self.npoints = npoints # 采样点数
        self.cat = {}
        self.normal_channel = normal_channel # 是否使用法向信息

        position_data = np.asarray(point_cloud.points)
        normal_data = np.asarray(point_cloud.normals)
        self.raw_pcd = np.hstack([position_data,normal_data]).astype(np.float32)

        self.cat = {'board':'12345678'}
        # 输出的是元组,('Airplane',123.txt)

        self.classes = {'board': 0} 

        data = self.raw_pcd

        if not self.normal_channel:  # 判断是否使用法向信息
            self.point_set = data[:, 0:3]
        else:
            self.point_set = data[:, 0:6]

        self.point_set[:, 0:3],self.centroid,self.m = pc_normalize(self.point_set[:, 0:3]) # 做一个归一化

        choice = np.random.choice(self.point_set.shape[0], self.npoints, replace=True) # 对一个类别中的数据进行随机采样 返回索引,允许重复采样
        # resample
        self.point_set =  self.point_set[choice, :] # 根据索引采样

    def __getitem__(self, index):

        cat = list(self.cat.keys())[0]
        cls = self.classes[cat] # 将类名转换为索引
        cls = np.array([cls]).astype(np.int32)

        return self.point_set, cls, self.centroid, self.m # pointset是点云数据,cls十六个大类别,seg是一个数据中,不同点对应的小类别

    def __len__(self):
        return 1



class Generate_txt_and_3d_img:
    def __init__(self,num_classes,testDataLoader,model,visualize = False):
        self.testDataLoader = testDataLoader
        self.num_classes = num_classes
        self.heat_map = False # 控制是否输出heatmap
        self.visualize = visualize # 是否open3d可视化
        self.model = model

        self.generate_predict()
        self.o3d_draw_3d_img()

    def __getitem__(self, index):
        return self.predict_pcd_colored

    def generate_predict(self):

        for _, (points, label,centroid,m) in tqdm.tqdm(enumerate(self.testDataLoader),
                                                                      total=len(self.testDataLoader),smoothing=0.9):

            #点云数据、整个图像的标签、每个点的标签、  没有归一化的点云数据(带标签)torch.Size([1, 7, 2048])
            points = points.transpose(2, 1)
            #print('1',target.shape) # 1 torch.Size([1, 2048])
            xyz_feature_point = points[:, :6, :]

            model = self.model

            seg_pred, _ = model(points, self.to_categorical(label, 1))
            seg_pred = seg_pred.cpu().data.numpy()

            if self.heat_map:
                out =  np.asarray(np.sum(seg_pred,axis=2))
                seg_pred = ((out - np.min(out) / (np.max(out) - np.min(out))))
            else:
                seg_pred = np.argmax(seg_pred, axis=-1)  # 获得网络的预测结果 b n c

            seg_pred = np.concatenate([np.asarray(xyz_feature_point), seg_pred[:, None, :]],
                    axis=1).transpose((0, 2, 1)).squeeze(0) 

            self.predict_pcd = seg_pred
            self.centroid = centroid
            self.m = m


    def o3d_draw_3d_img(self):

        pcd = self.predict_pcd
        pcd_vector = o3d.geometry.PointCloud()
        # 加载点坐标
        pcd_vector.points = o3d.utility.Vector3dVector(self.m * pcd[:, :3] + self.centroid)
        # colors = np.random.randint(255, size=(2,3))/255
        colors = np.array([[0.8, 0.8, 0.8],[1,0,0]])
        pcd_vector.colors = o3d.utility.Vector3dVector(colors[list(map(int,pcd[:, 6])),:])

        if self.visualize:
            coord_mesh = o3d.geometry.TriangleMesh.create_coordinate_frame(size = 0.1, origin = [0,0,0])
            o3d.visualization.draw_geometries([pcd_vector,coord_mesh])
        self.predict_pcd_colored = pcd_vector

    def to_categorical(self,y, num_classes):
        """ 1-hot encodes a tensor """
        new_y = torch.eye(num_classes)[y.cpu().data.numpy(),]
        if (y.is_cuda):
            return new_y.cuda()
        return new_y

def load_models(model_dict={'PonintNet': [pointnet2(num_classes=2,normal_channel=True).eval(),r'./log/part_seg/pointnet2_part_seg_msg/checkpoints']}):
    model = list(model_dict.values())[0][0]
    checkpoints_dir = list(model_dict.values())[0][1]
    weight_dict = torch.load(os.path.join(checkpoints_dir,'best_model.pth'))
    model.load_state_dict(weight_dict['model_state_dict'])
    return model

class Open3dVisualizer():

	def __init__(self):

		self.point_cloud = o3d.geometry.PointCloud()
		self.o3d_started = False

		self.vis = o3d.visualization.VisualizerWithKeyCallback()
		self.vis.create_window()

	def __call__(self, points, colors):

		self.update(points, colors)

		return False

	def update(self, points, colors):
		coord_mesh = o3d.geometry.TriangleMesh.create_coordinate_frame(size = 0.15, origin = [0,0,0])
		self.point_cloud.points = points
		self.point_cloud.colors = colors
		# self.point_cloud.transform([[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,1]])
		# self.vis.clear_geometries()
		# Add geometries if it is the first time
		if not self.o3d_started:
			self.vis.add_geometry(self.point_cloud)
			self.vis.add_geometry(coord_mesh)
			self.o3d_started = True

		else:
			self.vis.update_geometry(self.point_cloud)
			self.vis.update_geometry(coord_mesh)

		self.vis.poll_events()
		self.vis.update_renderer()

if __name__ =='__main__':
    
    num_classes = 2 # 填写数据集的类别数 如果是s3dis这里就填13   shapenet这里就填50
    
    color_image = o3d.io.read_image('image/rgb1.jpg')
    depth_image = o3d.io.read_image('image/depth1.png')
    
    point_cloud = generate_pointcloud(color_image=color_image, depth_image=depth_image)

    TEST_DATASET = PartNormalDataset(point_cloud,npoints=30000, normal_channel=True)
    testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=1, shuffle=False, num_workers=0,drop_last=True)
    predict_pcd = Generate_txt_and_3d_img(num_classes,testDataLoader,load_models(),visualize = True)

  把之前的代码改成了针对单个点云预测的可视化,点云由GRB图像和深度图像生成,如果想直接输入点云自己稍微改下代码就可以了,目前仅针对shapenet数据集格式的数据。这里要注意如果训练的时候选择了--normal,那么normal_channel要改成True
  看下训练效果,用modelnet40里的一个chair文件进行预测。

  可以看到这个椅子大致是分成了四块,但是椅子靠背、腿分割地挺好的,就是扶手有一部分分割到了坐垫那里了,毕竟训练时间不长。modelnet40数据集只是用来分类,并没有分割的标注,所以这里可视化了一下shapenet里标注好的椅子点云,看看椅子各个部位的分割(并非上面的椅子)。

  这里就比较显而易见地看出椅子分为靠背、扶手、坐垫、腿四个部分。
  初步观察到效果以后可以开始尝试自己制作数据集进行训练了,可以参考我写的这篇文章:《CloudCompare制作ShapeNet格式点云数据集》。

场景分割

  零件分割网络可以很容易地扩展到语义场景分割,点标记成为语义对象类而不是目标零件标记。
  在 Stanford 3D语义分析数据集上进行实验。该数据集包含来自Matterport扫描仪的6个区域的3D扫描,包括271个房间。扫描中的每个点都用13个类别(椅子、桌子、地板、墙壁等加上杂物)中的一个语义标签进行注释。
  先把文件下载过来: S3DIS ,存到文件夹data/s3dis/Stanford3dDataset_v1.2_Aligned_Version/.
  处理数据,数据会存到data/stanford_indoor3d/

cd data_utils
python collect_indoor3d_data.py

  运行:

## Check model in ./models 
## e.g., pointnet2_ssg
python train_semseg.py --model pointnet2_sem_seg --test_area 5 --log_dir pointnet2_sem_seg
python test_semseg.py --log_dir pointnet2_sem_seg --test_area 5 --visual

  上面的操作走完以后会在log/sem_seg/pointnet2_sem_seg/visual/生成预测结果的obj文件,可以用open3d进行可视化,就是不能用o3d.io.read_triangle_mesh函数来可视化obj文件,因为这里生成的obj文件还带了颜色信息用来表示语义信息,所以得读取成列表数据然后定义成o3d.geometry.PointCloud()变量显示,代码如下:

import copy
import numpy as np
import open3d as o3d
import os

objFilePath = 'log/sem_seg/pointnet2_sem_seg/visual/Area_5_office_8_gt.obj'

with open(objFilePath) as file:
    points = []
    while 1:
        line = file.readline()
        if not line:
            break
        strs = line.split(" ")
        if strs[0] == "v":
            points.append(np.array(strs[1:7],dtype=float))
        if strs[0] == "vt":
            break
# points原本为列表,需要转变为矩阵,方便处理          
pcd = np.array(points)

pcd_vector = o3d.geometry.PointCloud()
pcd_vector.points = o3d.utility.Vector3dVector(pcd[:, :3])
pcd_vector.colors = o3d.utility.Vector3dVector(pcd[:,3:6])
o3d.visualization.draw_geometries([pcd_vector])

  康康Area_5里office_8的效果:
  原图:

  ground truth:
在这里插入图片描述
  predict:


  OK,大致算是把这个PointNet++复现完了,着重做了下点云分割,给毕设做准备。总的来讲,训练和预测的过程并不难,为了康康效果,可视化的部分倒是花了挺长时间。零件分割和场景分割本质上讲其实是一回事,就是在代码里面这两个分割用了不同的模型来训练。之后打算自己制作数据集来训练一下,先拿零件分割的模型来做,毕竟场景分割做成S3DIS形式的数据集有点麻烦。总之跟着这篇blog走肯定是能跑通PointNet++的。


  添加一个自己做的用pointnet++做的书缝识别项目,GitHub里面有数据集和代码:https://github.com/struggler176393/Pointnet_book_seam。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/158619.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

centos7中安装Nginx和使用Nginx详细操作

环境: 准备了三台centos7虚拟机:192.168.213.4、192.168.213.5、192.168.213.6。 一、安装 三台虚拟机都安装下面的步骤执行,安装Nginx,为后面的使用演示使用。 1、安装必备组件: sudo yum install yum-utils2、配置yum源 在下面的文件目录…

详解自动化测试之 Selenium

目录 1. 什么是自动化 2.自动化测试的分类 3. selenium(web 自动化测试工具) 1)选择 selenium 的原因 2)环境部署 3)什么是驱动? 4. 一个简单的自动化例子 5.selenium 常用方法 5.1 查找页面元素&…

如何合理估算 Java 线程池大小

前 言 Java 中的线程创建会产生显著的成本。创建线程会消耗时间,增加请求处理的延迟,并且涉及 JVM 和操作系统的大量工作。为了减轻这些开销,线程池发挥了作用。 在本文中,我们将深入研究确定理想线程池大小的艺术。经过微调的线…

【C++】模版-初阶

目录 泛型编程--模版 函数模版 类模版 泛型编程--模版 函数模版 如何实现一个通用的交换函数呢?void Swap(int& left, int& right){int temp left;left right;right temp;}void Swap(double& left, double& right){double temp left;left right;righ…

基于ssm+vue交通事故档案系统

摘要 摘要是对文章、论文或其他文本的主要观点、结论和关键信息的简洁概括。由于你没有提供具体的文章或主题,我将为你创建一个通用的摘要。 本文介绍了一种基于SSM(Spring Spring MVC MyBatis)和Vue.js的交通事故档案管理系统的设计与实现…

设计模式-备忘录模式-笔记

动机(Motivation) 在软件构建过程中,某些对象的状态在转换过程中,可能由于某种需要,要求程序能够回溯到对象之前处于某个点时的状态。如果使用一些公有接口来让其他对象得到对象的状态,便会暴露对象的细节…

ROS服务(Service)通信:通信模型、Hello World与拓展

服务通讯是基于请求响应模式的,是一种应答机制。 用于偶然的、对时时性有要求、有一定逻辑处理需求的数据传输场景。 一、服务通讯模型 服务是一种双向通讯方式,它通过请求和应答的方式传递消息,该模型涉及到三个角色: Master…

USART(1)

什么是USART 单片机上有的许多的外设 单片机通过这些外设实现特殊的功能 如果单片机想要和蓝牙模块实现数据的传输那么就也需要单片机有串口模块来和蓝牙模块的串口进行连接 相互传输数据 在单片机上的串口就叫USART USART就是单片机上的外设 来实现串口之间的通信功能 USART名…

基于51单片机步进电机节拍步数正反转LCD1602显示( proteus仿真+程序+原理图+设计报告+讲解视频)

基于51单片机步进电机节拍步数正反转LCD1602显示 📑1. 主要功能:📑2. 讲解视频:📑3. 仿真📑4. 程序代码📑5. 设计报告📑6. 设计资料内容清单&&下载链接📑[资料下…

基于SSM的宠物医院管理系统

基于SSM的宠物医院管理系统的设计与实现~ 开发语言:Java数据库:MySQL技术:SpringMyBatisSpringMVC工具:IDEA/Ecilpse、Navicat、Maven 系统展示 主页 后台 摘要 随着人们对宠物健康关注的增加,宠物医疗服务的需求也…

许战海战略文库|企业竞争优势三大获取路径:产业、品牌和产品竞争优势

在快速发展和变革的全球化市场中,企业面临着持续的竞争压力。要在这种环境中脱颖而出,企业需要建立持久的竞争优势。通常,竞争优势可以从三个主要路径来获取:产业竞争优势、品牌竞争优势和产品竞争优势。 1. 产品竞争优势为什么很…

电子科技大学 分布式系统 期末复习笔记

第一章 为什么需要分布式系统:功能分离,固有的分布性,负载均衡,可靠性,经济性。 定义:分布式系统是这样一种系统,其中位于联网计算机上的组件仅通过传递消息来通信和协调它们的操作。 特点&am…

线性表的概念

目录 1.什么叫线性表2.区分线性表的题 1.什么叫线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串… 线性表在逻辑上是…

【Vue配置项】 computed计算属性 | watch侦听属性

目录 前言 computed计算属性 什么是计算属性? Vue的原有属性是什么? 得到的全新的属性是什么? 计算属性怎么用? 计算属性的作用是什么? 为什么说代码执行率高了? computed计算属性中的this指向 co…

【Java 进阶篇】JQuery 遍历 —— 无尽可能性的 `each` 之旅

在前端的征途中,操作元素是开发者不可避免的任务之一。而在 JQuery 中,each 方法则是处理这个任务的得力助手。本文将深入探讨 each 方法的奇妙之处,以及它与原生的 for...of 循环的关系,带你领略无尽可能性的遍历之旅。 起步&am…

modbusRTU通信简单实现(使用NModbus4通信库)

本文实现ModbusRTU通信,使用的是NModbus4通信库,使用 Modbus Slave是一个模拟Modbus协议从机的上位机软件,主要用于模拟测试跟其他主机设备通信的过程。与之成套存在的另一个软件--Modbus Poll,则是模拟Modbus协议主机的上位机软件…

元宇宙数字展厅无代码编辑工具的功能特点

商场如战场,营销是每个企业都必须重视的环节。随着科技的发展,3D展示营销制作平台作为企业快速搭建3D互动展厅的SaaS平台,逐渐崭露头角,为企业提供了诸多便利,让营销变得更加高效和引人入胜。 为企业提供身临其境的产品…

【EI会议征稿】第五届人工智能与机电自动化国际学术会议(AIEA 2024)

第五届人工智能与机电自动化国际学术会议(AIEA 2024) 2024 5th International Conference on Artificial Intelligence and Electromechanical Automation 第五届人工智能与机电自动化国际学术会议(AIEA 2024)将于2024年3月8-10…

算法竞赛备赛进阶之状态机模型训练

目录 1.大盗阿福 2.股票买卖IV 3.股票买卖V 4.设计密码 算法状态机(ASM)图是一种描述时序数字系统控制过程的算法流程图,其结构形式类似于计算机中的程序流程图。 ASM图是用一些特定符号按规定的连接方式来描述数字系统的功能。应用ASM图…

基于JavaWeb+SSM+购物系统微信小程序的设计和实现

基于JavaWebSSM购物系统微信小程序的设计和实现 源码获取入口前言主要技术系统设计功能截图Lun文目录订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 前言 第一章 绪 论 1.1选题背景 互联网是人类的基本需求,特别是在现代社会,…