深度学习第J8周:Inception v1算法实战与解析

目录

一、Inception v1

1.简介

2. 算法结构

二、pytorch代码复现1.前期准备

 2.代码复现

3.训练运行

3.2指定图片进行预测

 三、总结


🍨 本文为[🔗365天深度学习训练营]内部限免文章(版权归 *K同学啊* 所有)
🍖 作者:[K同学啊]

📌 本周任务:
1了解并学习图2中的卷积层运算量的计算过程(🏐储备知识->卷积层运算量的计算,有我的推导过程,建议先自己手动推导,然后再看)
2了解并学习卷积层的并行结构与1x1卷积核部分内容(重点)
3尝试根据模型框架图写入相应的pytorch代码,并使用Inception v1完成猴痘病识别

一、Inception v1

Going deeper with convolutions.pdf 不能打开就谷粉学术搜索下载

1.简介

Inception v1是一种深度卷积神经网络,它在ILSVRC14比赛中表现出最佳的分类和检测性能[1]。

该网络的最大特点是使用了Inception模块,该模块通过多种不同的卷积核来提取不同大小的特征图,并将这些特征图拼接在一起,从而同时考虑了不同尺度下的特征信息,提高了网络的准确性和泛化能力。

在Inception v1中,Inception模块一般由1x1、3x3和5x5的卷积层以及一个最大池化层组成,同时还会在最后加上一个1x1的卷积层来减少通道数,从而避免参数过多的问题[2]。Inception v1是后续Inception系列网络的基础,为深度学习领域的发展做出了重要贡献。

2. 算法结构

注:另外增加了两个辅助分支,作用有两点,一是为了避免梯度消失,用于向前传导梯度。反向传播时如果有一层求导为0,链式求导结果则为0。二是将中间某一层输出用作分类,起到模型融合作用,实际测试时,这两个辅助softmax分支会被去掉,在后续模型的发展中,该方法被采用较少,可以直接绕过,重点学习卷积层的并行结构与1x1卷积核部分的内容即可。

二、pytorch代码复现
1.前期准备

大致模板和以前一样,以后不再详细列,样例可见:深度学习第J4周:ResNet与DenseNet结合探索_牛大了2023的博客-CSDN博客

配置gpu+导入数据集

import os,PIL,random,pathlib
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
 
 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
print(device)
 
data_dir = './data/'
data_dir = pathlib.Path(data_dir)
 
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
print(classeNames)
 
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:", image_count)

数据预处理+划分数据集

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
 
test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
 
total_data = datasets.ImageFolder("./data/", transform=train_transforms)
print(total_data.class_to_idx)
 
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
 
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=0)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

 2.代码复现

class inception_block(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super().__init__()
        # 1x1 conv branch
        self.branch1 = nn.Sequential(
            nn.Conv2d(in_channels, ch1x1, kernel_size=1),
            nn.BatchNorm2d(ch1x1),
            nn.ReLU(inplace=True)
        )
        # 1x1 conv -> 3x3 conv branch
        self.branch2 = nn.Sequential(
            nn.Conv2d(in_channels, ch3x3red, kernel_size=1),
            nn.BatchNorm2d(ch3x3red),
            nn.ReLU(inplace=True),
            nn.Conv2d(ch3x3red, ch3x3, kernel_size=3, padding=1),
            nn.BatchNorm2d(ch3x3),
            nn.ReLU(inplace=True)
        )
        # 1x1 conv -> 5x5 conv branch
        self.branch3 = nn.Sequential(
            nn.Conv2d(in_channels, ch5x5red, kernel_size=1),
            nn.BatchNorm2d(ch5x5red),
            nn.ReLU(inplace=True),
            nn.Conv2d(ch5x5red, ch5x5, kernel_size=3, padding=1),
            nn.BatchNorm2d(ch5x5),
            nn.ReLU(inplace=True)
        )
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            nn.Conv2d(in_channels, pool_proj, kernel_size=1),
            nn.BatchNorm2d(pool_proj),
            nn.ReLU(inplace=True)
        )

    def forward(self, x):
        branch1_output = self.branch1(x)
        branch2_output = self.branch2(x)
        branch3_output = self.branch3(x)
        branch4_output = self.branch4(x)

        outputs = [branch1_output, branch2_output, branch3_output, branch4_output]
        return torch.cat(outputs, 1)

class InceptionV1(nn.Module):
    def __init__(self, num_classes=1000):
        super(InceptionV1, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.conv2 = nn.Conv2d(64, 64, kernel_size=1, stride=1, padding=1)
        self.conv3 = nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1)
        self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2)
        self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(2, stride=2)
        self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128)

        self.inception5b=nn.Sequential(
        inception_block(832, 384, 192, 384, 48, 128, 128),
        nn.AvgPool2d(kernel_size=7,stride=1,padding=0),
        nn.Dropout(0.4)
        )
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
        nn.Linear(in_features=1024, out_features=1024),
        nn.ReLU(),
        nn.Linear(in_features=1024, out_features=num_classes),
        nn.Softmax(dim=1)
        )
    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.maxpool2(x)
        x = self.inception3a(x)
        x = self.inception3b(x)
        x = self.maxpool3(x)

        x = self.inception4a(x)
        x = self.inception4b(x)
        x = self.inception4c(x)
        x = self.inception4d(x)
        x = self.inception4e(x)
        x = self.maxpool4(x)
        x = self.inception5a(x)
        x = self.inception5b(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)
        return x;
# 定义完成,测试一下
model = InceptionV1(4)
model.to(device)

# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))

3.训练运行

 代码和以前的差不多,不再细说

 
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)
 
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
 
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
 
        # 计算预测误差
        pred = model(X)  # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
 
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()  # 反向传播
        optimizer.step()  # 每一步自动更新
 
        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
 
    train_acc /= size
    train_loss /= num_batches
 
    return train_acc, train_loss
 
 
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)  # 批次数目
    test_loss, test_acc = 0, 0
 
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
 
            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
 
            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
 
    test_acc /= size
    test_loss /= num_batches
 
    return test_acc, test_loss

跑十轮并保存模型

 
import copy
 
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数
 
epochs = 10
 
train_loss = []
train_acc = []
test_loss = []
test_acc = []
 
best_acc = 0  # 设置一个最佳准确率,作为最佳模型的判别指标
 
for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    # adjust_learning_rate(optimizer, epoch, learn_rate)
 
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
 
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
 
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)
 
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
 
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
 
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
                          epoch_test_acc * 100, epoch_test_loss, lr))
 
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)
 
print('Done')

 打印训练记录图

import matplotlib.pyplot as plt
# 隐藏警告
import warnings
 
warnings.filterwarnings("ignore")  # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率
 
epochs_range = range(epochs)
 
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

3.2指定图片进行预测

把训练部分注释掉

 
from PIL import Image
 
classes = list(total_data.class_to_idx)
 
 
def predict_one_image(image_path, model, transform, classes):
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片
 
    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
 
    model.eval()
    output = model(img)
 
    _, pred = torch.max(output, 1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
 
 
# 预测训练集中的某张照片
predict_one_image(image_path='./data/Others/NM01_01_01.jpg',
                  model=model,
                  transform=train_transforms,
                  classes=classes)

 三、总结

Inception v1是一种深度卷积神经网络,其结构特点是采用多个不同大小的卷积核对输入特征图进行卷积操作,并将各个卷积核的输出在深度维度进行拼接(concate)得到最终的输出。使用Inception v1的目的是为了能够在多个尺度下提取特征,并将这些特征合并起来以提高分类和检测的准确率和速度。

要用PyTorch复现Inception v1,可以首先定义Inception模块,包括四个分支,每个分支使用不同的卷积核进行卷积操作。然后,将四个分支的输出在深度维度上拼接起来得到最终输出。可以使用PyTorch中的nn.Module来实现Inception模块。接下来,将多个Inception模块按照一定的顺序进行组合,形成完整的Inception v1网络结构。可以使用PyTorch中的nn.Sequentialnn.ModuleList来实现网络的组合。最后,通过反向传播优化网络参数,以达到训练的目的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/15734.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux:网络基础1

网络协议分层 所有网络问题,本质都是通信距离变长了,为了尽可能减少通信成本,定制了协议。 协议分层的优势: 软件设计方面的优势 - 低耦合 一般我们的分层依据: 功能比较集中,耦合度比较高的模块-- 一层 &#xff0c…

2023五一数学建模A题完整思路

已更新五一数学建模A题思路,文章末尾获取! A题完整思路: A题是一个动力学问题,需要我们将物理学概念运用到实际生活中,我们可以先看题目 问题1: 假设无人机以平行于水平面的方式飞行,在空中投…

代码审计笔记之开篇

思想 代码审计是从软件测试发展而来,早起一般采用常规软件测试与渗透测试的手段来发现源码漏洞,但是随着软件规模的越来越大,架构越来越复杂,安全漏洞和后门也越来越多越来越隐蔽,这使得传统的软件测试方法很难检出源…

达梦数据库中注释的使用

在管理规模较大的数据库时,我们往往需要面对大量的表与视图,与此同时在表与视图中可能会存在着许多的字段,让人难以迅速分辨,不利于对于数据库对象的管理。除了在命名时,对于有意义的表、视图及列,应尽量赋…

你可能需要的IDEA-Java开发插件

Idea开发插件 Alibaba Cloud AI Coding Assistant 阿里云智能编码插件(Alibaba Cloud AI Coding Assistant)是一款AI编程助手,它提供代码智能补全和代码示例搜索能力,帮助你更快更高效地写出高质量代码。 让我觉得比较有意思的…

CentOS防火墙的常用快捷命令

CentOS是免费开源的Linux发行版之一,它兼容RHEL并由社区进行维护,大多数美国服务器提供对该系统支持。在使用CentOS系统时,您需要了解一些常用命令,比如开启、查看、关闭防火墙等。本文将介绍下CentOS防火墙的常用命令。 CentOS是一种面向企业级服务器环境的Linux发行版,…

直击德国PLS展,联诚发倾力打造沉浸式视觉盛宴!

当地时间4月25-28日,备受关注的2023德国法兰克福国际专业灯光音响展ProlightSound(以下简称“PLS展”)在德国法兰克福盛大召开。联诚发携多款创新产品及多领域的应用解决方案精彩亮相,为全球客户打造沉浸式视觉盛宴,展…

JavaScript详解

一、前置知识 1.1第一个JS程序 JavaScript 代码可以嵌入到 HTML 的 script 标签中。 1.2JS书写格式 1.2.1行内样式 直接嵌入到html元素内部 1.2.2内嵌格式 1.2.3外部格式 注意这种情况下,script标签中间不能写任何代码,必须空着,就算…

java内存占用过大分析,mat内存快照分析

背景 最近功能模块上线后,生产内存占用显著提升,查看gc日志发现年轻代频繁从2G回收到60M左右,猜测是在方法中频繁创建大对象导致,由于一时间无法通过review代码找出问题所在,只好将生产jvm内存快照dump后通过java mem…

HCIA-RS实验-STP和RSTP(2)

接上一篇文章;其他的不多说,新建一个新的配置设备;如果接上一个实验的配置的话,建议先把所有配置删除后再执行;新的拓扑也与上一个实验一致; 目录 创建新配置 配置RSTP 查看stp版本 配置边缘端口 …

深度学习 GNN图神经网络(四)线性回归之ESOL数据集水溶性预测

线性回归之ESOL数据集水溶性预测 一、前言二、ESOL数据集三、加载数据集四、数据拆分五、构造模型六、训练模型七、测试结果八、分类问题参考文献 一、前言 本文旨在使用化合物分子的SMILES字符串进行数据模型训练,对其水溶性的值进行预测。 之前的文章《深度学习…

vue - pc端实现对div的拖动功能

实现对div的拖动功能,需要先要知道以下的一些原生事件和方法; 1,事件: 方法描述onmousedown鼠标按钮被按下onmousemove鼠标被移动onmouseup鼠标按键被松开 2,方法: 方法描述event.clientX返回当事件被触发时鼠标指针相对于浏览…

02 【Sass语法介绍-变量】

sass有两种语法格式Sass(早期的缩进格式:Indented Sass)和SCSS(Sassy CSS) 目前最常用的是SCSS,任何css文件将后缀改为scss,都可以直接使用Sassy CSS语法编写。 所有有效的 CSS 也同样都是有效的 SCSS。 Sass语法介绍-变量 1.前言 Sass …

【VM服务管家】VM4.0平台SDK_2.5 全局工具类

目录 2.5.1 全局相机:全局相机设置参数的方法2.5.2 全局相机:获取全局相机列表的方法2.5.3 全局通信:通信管理中设备开启状态管理2.5.4 全局通信:接收和发送数据的方法2.5.5 全局变量获取和设置全局变量的方法 2.5.1 全局相机&…

2023-4-27-深入理解C++指针类型间强制转换

🍿*★,*:.☆( ̄▽ ̄)/$:*.★* 🍿 💥💥💥欢迎来到🤞汤姆🤞的csdn博文💥💥💥 💟💟喜欢的朋友可以关注一下&#xf…

记一次峰回路转的注入

0X01 背景 自己之前写过一篇记录,当时是由于之前是一位校友刚做开发,叫我友情帮忙测试一波,由于是开发的新手,漏洞比较多,所以直接从注入开始讲起,但是到getshell的过程也算是一场峰回路转再跌跌撞撞的路程…

【Java笔试强训 17】

🎉🎉🎉点进来你就是我的人了博主主页:🙈🙈🙈戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔🤺🤺🤺 目录 一、选择题 二、编程题 🔥杨辉三角…

洞见数字时代的创新原力,数云原力大会暨2023TECH第五届数字中国技术年会开幕

4月25日,神州控股、神州信息、神州数码集团共同主办的数云原力大会暨2023TECH第五届数字中国技术年会开幕。开幕式上,数百位投身并关注数字技术、数字产业发展的学者、技术专家、从业者、行业用户齐聚一堂,围绕云原生、数字原生、大数据、金融…

这一次,让Kotlin Flow 操作符真正好用起来

前言 Kotlin Flow 如此受欢迎大部分归功于其丰富、简洁的操作符,巧妙使用Flow操作符可以大大简化我们的程序结构,提升可读性与可维护性。 然而,虽然好用,但有些操作符不太好理解,可惜的是网上大部分文章只是简单介绍其…

吴恩达 Chatgpt prompt 工程--1.Guidelines

课程链接 Setup #安装 !pip install openai#设置key !export OPENAI_API_KEYsk-... # or #import openai #openai.api_key "sk-..."import openai import osfrom dotenv import load_dotenv, find_dotenv _ load_dotenv(find_dotenv())openai.api_key os.geten…