【YOLOv7/YOLOv5系列算法改进NO.47】改进激活函数为GELU

文章目录

  • 前言
  • 一、解决问题
  • 二、基本原理
  • 三、​添加方法
  • 四、总结


前言

作为当前先进的深度学习目标检测算法YOLOv7,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv7的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv7,YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。
具体改进办法请关注后私信留言!关注免费领取深度学习算法学习资料!


一、解决问题

之前改进从改进的部位来分的话从输入端、主干特征提取网络(backbone)、特征融合网络(neck)、检测头等四个方面进行改进,从改进的方法包括添加注意力机制、损失函数改进、改变网络结构、替换主干特征提取网络、改进非极大值抑制、k-means++聚类算法等方面进行改进,本文尝试通过改进更为专用于视觉任务的激活函数来网络进行改进。原激活函数为SiLU激活函数,改进激活函数来提高检测效果。此前💡🎈☁️34. 更换激活函数为FReLU💡🎈☁️46. 改进激活函数为ACON有一定效果。本次改进为GELU。

二、基本原理

原文链接
早期的人工神经元使用二进制阈值单位(Hopfield,1982;McCulloch&Pitts,1943)。这些艰难的二元决策通过乙状激活来平滑,使神经元能够进行“枞树率”解释,并通过反向传播进行训练。但随着网络的深入,使用s形激活的训练被证明不如非平滑、概率较小的ReLU(Nair&Hinton,2010)有效,后者根据输入的符号做出艰难的门控决策。尽管ReLU的统计动机较少,但它仍然是一种具有竞争性的工程解决方案,通常比s形激活更快、更好地实现收敛。在ReLU成功的基础上,最近的一种称为ELU的修改(Clevert等人,2016)允许ReLU类非线性输出负值,有时会提高训练速度。总之,激活选择仍然是神经网络的必要架构决策,以免网络成为深度线性分类器。深度非线性分类器可以很好地拟合其数据,以至于网络设计者经常面临选择包括随机正则化器,如向隐藏层添加噪声或应用丢弃(Sri-vastava等人,2014),而这一选择与激活函数分离。一些随机正则化器可以使网络表现得像一个网络集合,一个伪集合(Bach-man等人,2014),并可以导致显著的准确性提高。例如,随机正则化器丢弃通过零乘法随机改变一些激活决策来创建伪系综。因此,非线性和脱落共同决定了神经元的输出,但这两个创新仍然是不同的。更重要的是,两者都不包含另一个,因为流行的随机正则化器的行为与输入无关,而非线性是由这种正则化器辅助的。在这项工作中,我们引入了一种新的非线性,高斯误差线性单元(GELU)。它与随机正则化相关,因为它是对自适应丢弃的修改的预期(Ba&Frey,2013)。这表明神经元的输出具有更高的概率性。我们发现,这种新颖的非线性与ReLU或ELU在计算机视觉、自然语言处理和自动语音识别等任务中的模型相匹配或超过。
在这里插入图片描述
在这里插入图片描述

三、​添加方法

第一步:损失函数定义到YOLOv7或者YOLOv5的utils/activations.py中。

class GELU(nn.Module):
    def __init__(self):
        super(GELU, self).__init__()

    def forward(self, x):
        return 0.5 * x * (1 + torch.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x, 3))))

第二步:common.py构建模块。重构Conv模块。

#GELU  公众号:人工智能AI算法工程师   微信:Worker123654 
from utils.activations import GELU
class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super(Conv, self).__init__()
        #.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p),dilation=1, groups=g, bias=False)#空洞卷积
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = GELU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

第三步:将train.py中改为本文的yaml文件即可,开始训练,即可将原Conv中的激活函数改为GELU函数。

四、总结

预告一下:下一篇内容将继续分享深度学习算法相关改进方法。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦

PS:该方法不仅仅是适用改进YOLOv5,也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv7、v6、v4、v3,Faster rcnn ,ssd等。

最后,有需要的请关注私信我吧。关注免费领取深度学习算法学习资料!


YOLO系列算法改进方法 | 目录一览表
💡🎈☁️1. 添加SE注意力机制
💡🎈☁️2.添加CBAM注意力机制
💡🎈☁️3. 添加CoordAtt注意力机制
💡🎈☁️4. 添加ECA通道注意力机制
💡🎈☁️5. 改进特征融合网络PANET为BIFPN
💡🎈☁️6. 增加小目标检测层
💡🎈☁️7. 损失函数改进
💡🎈☁️8. 非极大值抑制NMS算法改进Soft-nms
💡🎈☁️9. 锚框K-Means算法改进K-Means++
💡🎈☁️10. 损失函数改进为SIOU
💡🎈☁️11. 主干网络C3替换为轻量化网络MobileNetV3
💡🎈☁️12. 主干网络C3替换为轻量化网络ShuffleNetV2
💡🎈☁️13. 主干网络C3替换为轻量化网络EfficientNetv2
💡🎈☁️14. 主干网络C3替换为轻量化网络Ghostnet
💡🎈☁️15. 网络轻量化方法深度可分离卷积
💡🎈☁️16. 主干网络C3替换为轻量化网络PP-LCNet
💡🎈☁️17. CNN+Transformer——融合Bottleneck Transformers
💡🎈☁️18. 损失函数改进为Alpha-IoU损失函数
💡🎈☁️19. 非极大值抑制NMS算法改进DIoU NMS
💡🎈☁️20. Involution新神经网络算子引入网络
💡🎈☁️21. CNN+Transformer——主干网络替换为又快又强的轻量化主干EfficientFormer
💡🎈☁️22. 涨点神器——引入递归门控卷积(gnConv)
💡🎈☁️23. 引入SimAM无参数注意力
💡🎈☁️24. 引入量子启发的新型视觉主干模型WaveMLP(可尝试发SCI)
💡🎈☁️25. 引入Swin Transformer
💡🎈☁️26. 改进特征融合网络PANet为ASFF自适应特征融合网络
💡🎈☁️27. 解决小目标问题——校正卷积取代特征提取网络中的常规卷积
💡🎈☁️28. ICLR 2022涨点神器——即插即用的动态卷积ODConv
💡🎈☁️29. 引入Swin Transformer v2.0版本
💡🎈☁️30. 引入10月4号发表最新的Transformer视觉模型MOAT结构
💡🎈☁️31. CrissCrossAttention注意力机制
💡🎈☁️32. 引入SKAttention注意力机制
💡🎈☁️33. 引入GAMAttention注意力机制
💡🎈☁️34. 更换激活函数为FReLU
💡🎈☁️35. 引入S2-MLPv2注意力机制
💡🎈☁️36. 融入NAM注意力机制
💡🎈☁️37. 结合CVPR2022新作ConvNeXt网络
💡🎈☁️38. 引入RepVGG模型结构
💡🎈☁️39. 引入改进遮挡检测的Tri-Layer插件 | BMVC 2022
💡🎈☁️40. 轻量化mobileone主干网络引入
💡🎈☁️41. 引入SPD-Conv处理低分辨率图像和小对象问题
💡🎈☁️42. 引入V7中的ELAN网络
💡🎈☁️43. 结合最新Non-local Networks and Attention结构
💡🎈☁️44. 融入适配GPU的轻量级 G-GhostNet
💡🎈☁️45. 首发最新特征融合技术RepGFPN(DAMO-YOLO)
💡🎈☁️46. 改进激活函数为ACON

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/156223.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

modbus转profinet网关连接PLC与变频器控制摆辊应用在涂布机案例

通过兴达易控modbus转profinet网关的应用,PLC能够直接与变频器进行通讯,并实现对摆辊的精确控制。兴达易控modbus转profinet网关(XD-MDPN100)作为一个高性能的转换设备,能够稳定可靠地完成modbus和profinet之间的数据转…

智慧城市安全监控的新利器

在传统的城市管理中,井盖的监控一直是一个难题,而井盖异动传感器的出现为这一问题提供了有效的解决方案。它具有体积小、重量轻、安装方便等特点,可以灵活地应用于各种类型的井盖,实现对城市基础设施的全方位监控。 智能井盖监测终…

《低代码指南》——国内首个向量数据库标准亮相,腾讯云联合50家企业共同编制

11月15日,在腾讯云向量数据库技术及产业峰会上,腾讯云全面升级向量数据库多项核心性能,最高支持千亿级向量规模和500万QPS峰值能力,同时和信通院一起联合50多家企业共同发布了国内首个向量数据库标准,推进向量数据库及大模型相关产业走向大规模应用。 腾讯集团高级执行副总…

[修改Linux下ssh端口号]解决无法修改sshd_config无法修改

前言:写本文的前因是本人的阿里云服务器经常被黑客暴力破解ssh的22端口号。再网络上搜索解决都是说使用root权限进行修改,但本人在root下也无法成功进行修改sshd_config文件。所以在大量搜索下终于找到了解决方案,现在分享出来给有需要的人使…

安卓用户当心: CERT-IN 发布高危漏洞警告

已发现的漏洞一旦被利用,将构成严重风险,可能导致未经授权访问敏感信息。 印度计算机应急响应小组(CERT-IN)在最近发布的一份公告中,就影响印度安卓用户的新安卓漏洞发出了重要警告。 该警告对使用安卓 11、12、12L、…

delphi电子处方流转 sm2 sm4(医院)

【delphi电子处方流转(医院) sm2 sm4】支持 就诊登记、电子处方上传预核验、处方处方医保电子签名、电子处方上传、电子处方撤销、电子处方信息查询、电子处方审核结果查询、电子处方取药结果查询、电子处方药品目录查询等功能。技术交流Q 648437169 下载链接:http…

RT-DETR算法优化改进:SCConv,空间和通道重建卷积 | CVPR2023 | 卷积变体大作战

💡💡💡本文改进:SCConv(空间和通道重建卷积),一个即插即用的架构单元,可以直接用来替代各种卷积神经网络中的标准卷积。 1)放入Neck RepC3后面; RT-DETR魔术师专栏介绍: https://blog.csdn.net/m0_63774211/category_12497375.html ✨✨✨魔改创新RT-DETR �…

【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr

【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr 文章目录 【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr1. 安装视频播放器vlc2. 安装录屏软件ssr 1. 安装视频播放器vlc sudo apt-get install vlcvlc是一款比较简洁的视频播放器,如下所示 2. 安…

生成对抗网络Generative Adversarial Network,GAN

Basic Idea of GAN Generation(生成器)  Generation是一个neural network,它的输入是一个vector,它的输出是一个更高维的vector,以图片生成为例,输出就是一张图片,其中每个维度的值代表生…

《Linux从练气到飞升》No.30 深入理解 POSIX 信号量与生产消费模型

🕺作者: 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的…

渗透测试——1

1.计算机地址 计算机在网络中的地址有以下3类: (1)物理地址 物理地址相当于现实生活中的人脸,是不可改变的,独一无二的。每张网卡的物理地址是固定不变的。 物理地址由六个十六进制数组成,如&…

求臻医学:当MRD遇到肺癌 见招拆招,斩草除根

当MRD遇到肺癌→见招拆招,斩草除根 浅谈MRD在肺癌中的应用 新辅助治疗后,可以通过MRD来辅助评估预后,一般MRD阴性与新辅助治疗后的pCR (病理完全缓解)相关,达到MRD阴性或pCR的惠者预后更好. MRD在肺癌中可潜在解决的问题点1.术…

AI绘画API:提升艺术创作的效率和品质

导言 人工智能技术的迅猛发展为艺术创作领域注入了新的活力,而AI绘画API作为其中的亮点,正逐渐成为艺术家们创作的得力助手。本文将深入探讨AI绘画API在艺术创作中的应用,以及其在提高效率和品质方面的独特价值。 AI绘画API的多领域应用 A…

关于苏州立讯公司国产替代案例(使用我公司H82409S网络变压器和E1152E01A-YG网口连接器产品)

关于苏州立讯公司国产替代案例(使用我们公司的H82409S网络变压器和E1152E01A-YG网口连接器产品) 苏州立讯公司是一家专注于通信设备制造的企业,他们在其产品中选择了我们公司的H82409S网络变压器和E1152E01A-YG网口连接器,以实现…

Java读取本地文件

import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException;public class Main {public static void main(String[] args) {String filePath "C:/Users/admin/Desktop/知识点记录.md";// 创建一个文件对象File f…

Docker Desktop 配置阿里云镜像加速

阿里云搜索镜像,打开容器镜像服务,复制镜像加速器地址 Docker Desktop 右上角设置,选择 Docker Engine,在配置中添加阿里云的镜像地址,右下 Apply & restart 即可。 "registry-mirrors": ["https…

NSS [NISACTF 2022]bingdundun~

NSS [NISACTF 2022]bingdundun~ 考点:phar伪协议 点击连接,跳转到上传文件界面 提示只能上传图片或者压缩包 同时注意到了,url栏有个GET传参。传值为index试试,发现回显好多个//index.php,猜测这里传参,…

unity 烘焙的时候出现模型没有光影的情况

unity 烘焙的时候出现模型没有光影的情况 1.模型没有设置生成光照贴图 需要勾选模型的生成光照贴图UVs,然后应用 2.游戏对象没有勾选静态选项 点开静态下拉列表,选择 contribute GI

连新手小白都知道的电子画册一键生成器,你还不知道吗?

相信大家平时见得比较多的是纸质画册,而对于电子画册大家又了解多少呢?电子画册近年来倍受众多企业青睐,制作一本好的电子画册能够让企业在市场竞争中脱颖而出,给人以深刻印象。如何制作呢? 其实很简单,关…