传递函数的推导和理解

传递函数的推导和理解

假设有一个线性系统,在一般情况下,它的激励 x ( t ) x(t) x(t)与响应 y ( t ) y(t) y(t)所满足的的关系,可用下列微分方程来表示:
a n y ( n ) + a n − 1 y ( n − 1 ) + a n − 2 y ( n − 2 ) + ⋯ + a 1 y ′ + a 0 y = b m x ( m ) + b m − 1 x ( m − 1 ) + b m − 2 x ( m − 2 ) + ⋯ + b 1 x ′ + b 0 x (1) \begin{array}{l}{a_n}{y^{(n)}} + {a_{n - 1}}{y^{(n - 1)}} + {a_{n - 2}}{y^{(n - 2)}} + \cdots + {a_1}y' + {a_0}y\\ = {b_m}{x^{({\rm{m}})}} + {b_{m - 1}}{x^{({\rm{m - 1}})}} + {b_{m - 2}}{x^{({\rm{m - 2}})}} + \cdots + {b_1}x' + {b_0}x\end{array}\tag1 any(n)+an1y(n1)+an2y(n2)++a1y+a0y=bmx(m)+bm1x(m1)+bm2x(m2)++b1x+b0x(1)
其中, a 0 , a 1 , ⋯   , a n , b 0 , b 1 , ⋯   , b m {a_0},{a_1}, \cdots ,{a_n},{b_0},{b_1}, \cdots ,{b_m} a0,a1,,an,b0,b1,,bm均为常数, m , n m,n m,n为正整数, n ≥ m n \ge m nm

L [ y ( t ) ] = Y ( s ) , L [ x ( t ) ] = X ( s ) \mathscr{L}[y(t)]=Y(s),\mathscr{L}[x(t)]=X(s) L[y(t)]=Y(s),L[x(t)]=X(s),根据Laplace变换的微分性质,有

L [ a k y ( k ) ] = a k s k Y ( s ) − a k [ s k − 1 y ( 0 ) + s k − 2 y ′ ( 0 ) + s k − 3 y ′ ′ ( 0 ) + ⋯ + s k − ( k − 1 ) y ( k − 2 ) ( 0 ) + s 0 y ( k − 1 ) ( 0 ) ] ( k = 0 , 1 , 2 , ⋯   , n ) {\mathscr L}[{a_k}{y^{(k)}}] = {a_k}{s^k}Y(s) - {a_k}[{s^{k - 1}}y(0) + {s^{k - 2}}y'(0) + {s^{k - 3}}y''(0) + \cdots + {s^{k - (k - 1)}}{y^{(k - 2)}}(0) + {s^0}{y^{(k - 1)}}(0)]\\(k = 0,1,2, \cdots ,n) L[aky(k)]=akskY(s)ak[sk1y(0)+sk2y(0)+sk3y′′(0)++sk(k1)y(k2)(0)+s0y(k1)(0)](k=0,1,2,,n)

L [ b k x ( k ) ] = b k s k X ( s ) − b k [ s k − 1 x ( 0 ) + s k − 2 x ′ ( 0 ) + s k − 3 x ′ ′ ( 0 ) + ⋯ + s k − ( k − 1 ) x ( k − 2 ) ( 0 ) + s 0 x ( k − 1 ) ( 0 ) ] ( k = 0 , 1 , 2 , ⋯   , m ) {\mathscr L}[{b_k}{x^{(k)}}] = {b_k}{s^k}X(s) - {b_k}[{s^{k - 1}}x(0) + {s^{k - 2}}x'(0) + {s^{k - 3}}x''(0) + \cdots + {s^{k - (k - 1)}}{x^{(k - 2)}}(0) + {s^0}{x^{(k - 1)}}(0)] \\(k = 0,1,2, \cdots ,m) L[bkx(k)]=bkskX(s)bk[sk1x(0)+sk2x(0)+sk3x′′(0)++sk(k1)x(k2)(0)+s0x(k1)(0)](k=0,1,2,,m)

对式子(1)两边进行Laplace变换并通过整理,可得:
D ( s ) Y ( s ) − M h y ( s ) = M ( s ) X ( s ) − M h x ( s ) D(s)Y(s) - {M_{hy}}(s) = M(s)X(s) - {M_{hx}}(s) D(s)Y(s)Mhy(s)=M(s)X(s)Mhx(s)
即:
Y ( s ) = M ( s ) D ( s ) X ( s ) + M h y ( s ) − M h x ( s ) D ( s ) (2) Y(s) = \frac{{M(s)}}{{D(s)}}X(s) + \frac{{{M_{hy}}(s) - {M_{hx}}(s)}}{{D(s)}}\tag2 Y(s)=D(s)M(s)X(s)+D(s)Mhy(s)Mhx(s)(2)
其中,
D ( s ) = a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 , D(s) = {a_n}{s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}, D(s)=ansn+an1sn1++a1s+a0,
M ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 , M(s) = {b_m}{s^m} + {b_{m - 1}}{s^{m - 1}} + \cdots + {b_1}s + {b_0}, M(s)=bmsm+bm1sm1++b1s+b0,

M h y ( s ) = a n y ( 0 ) s n − 1 + [ a n y ′ ( 0 ) + a n − 1 y ( 0 ) ] s n − 2 + [ a n y ′ ′ ( 0 ) + a n − 1 y ′ ( 0 ) + a n − 2 y ( 0 ) ] s n − 3 + ⋯ + [ a n y ( n − 2 ) ( 0 ) + a n − 1 y ( n − 3 ) ( 0 ) + ⋯ + a 2 y ( 0 ) ] s + [ a n y ( n − 1 ) ( 0 ) + a n − 1 y ( n − 2 ) ( 0 ) + ⋯ + a 1 y ( 0 ) ] , {M_{hy}}(s) = {a_n}y(0){s^{n - 1}} + [{a_n}y'(0) + {a_{n - 1}}y(0)]{s^{n - 2}} + [{a_n}y''(0) + {a_{n - 1}}y'(0) + {a_{n - 2}}y(0)]{s^{n - 3}} + \cdots + [{a_n}{y^{(n - 2)}}(0) + {a_{n - 1}}{y^{(n - 3)}}(0) + \cdots + {a_2}y(0)]s + [{a_n}{y^{(n - 1)}}(0) + {a_{n - 1}}{y^{(n - 2)}}(0) + \cdots + {a_1}y(0)], Mhy(s)=any(0)sn1+[any(0)+an1y(0)]sn2+[any′′(0)+an1y(0)+an2y(0)]sn3++[any(n2)(0)+an1y(n3)(0)++a2y(0)]s+[any(n1)(0)+an1y(n2)(0)++a1y(0)],

M h x ( s ) = b m x ( 0 ) s m − 1 + [ b m x ′ ( 0 ) + b m − 1 x ( 0 ) ] s m − 2 + [ b m x ′ ′ ( 0 ) + b m − 1 x ′ ( 0 ) + b m − 2 x ( 0 ) ] s m − 3 + ⋯ + [ b m x ( m − 2 ) ( 0 ) + b m − 1 x ( m − 3 ) ( 0 ) + ⋯ + b 2 x ( 0 ) ] s + [ b m x ( m − 1 ) ( 0 ) + b m − 1 x ( n − 2 ) ( 0 ) + ⋯ + b 1 x ( 0 ) ] , {M_{hx}}(s) = {b_m}x(0){s^{m - 1}} + [{b_m}x'(0) + {b_{m - 1}}x(0)]{s^{m - 2}} + [{b_m}x''(0) + {b_{m - 1}}x'(0) + {b_{m - 2}}x(0)]{s^{m - 3}} + \cdots + [{b_m}{x^{(m - 2)}}(0) + {b_{m - 1}}{x^{(m - 3)}}(0) + \cdots + {b_2}x(0)]s + [{b_m}{x^{(m - 1)}}(0) + {b_{m - 1}}{x^{(n - 2)}}(0) + \cdots + {b_1}x(0)], Mhx(s)=bmx(0)sm1+[bmx(0)+bm1x(0)]sm2+[bmx′′(0)+bm1x(0)+bm2x(0)]sm3++[bmx(m2)(0)+bm1x(m3)(0)++b2x(0)]s+[bmx(m1)(0)+bm1x(n2)(0)++b1x(0)],

若令 G ( s ) = M ( s ) G ( s ) G(s) = \frac{{M(s)}}{{G(s)}} G(s)=G(s)M(s) G h ( s ) = M h y ( s ) − M h x ( s ) D ( s ) {G_h}(s) = \frac{{{M_{hy}}(s) - {M_{hx}}(s)}}{{D(s)}} Gh(s)=D(s)Mhy(s)Mhx(s),则式(2)可写为:
Y ( s ) = G ( s ) X ( s ) + G h ( s ) (3) Y(s) = G(s)X(s) + {G_h}(s)\tag3 Y(s)=G(s)X(s)+Gh(s)(3)

式子中:
G ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 (4) G(s) = \frac{{{b_m}{s^m} + {b_{m - 1}}{s^{m - 1}} + \cdots + {b_1}s + {b_0}}}{{{a_n}{s^n} + {a_{n - 1}}{s^{n - 1}} + \cdots + {a_1}s + {a_0}}}\tag4 G(s)=ansn+an1sn1++a1s+a0bmsm+bm1sm1++b1s+b0(4)
我们称 G ( s ) G(s) G(s)为系统的传递函数。它表达了系统本身的特性,而与激励及系统的初始状态无关。
但是 G h ( s ) G_{h}(s) Gh(s)则由激励和系统本身的初值条件所决定。若这些初始条件全为0,即 G h ( s ) G_{h}(s) Gh(s)=0时,式子(3)可写成:
Y ( s ) = G ( s ) X ( s ) 或 G ( s ) = Y ( s ) X ( s ) (5) \begin{array}{l}Y(s) = G(s)X(s) 或 G(s) = \frac{{Y(s)}}{{X(s)}}\end{array}\tag5 Y(s)=G(s)X(s)G(s)=X(s)Y(s)(5)

式子(5)表明,在零初值条件下,系统的传递函数等于其响应的Laplace变换与其激励的Laplace变换之比。

因此,当我们知道系统的传递函数后,就可以由系统的激励按照式子(3)或式子(5)求出其响应的拉普拉斯变换 Y ( s ) Y(s) Y(s),再通过求逆变换可得其响应 y ( t ) y(t) y(t)

系统的激励 x ( t ) x(t) x(t),系统的响应 y ( t ) y(t) y(t),以及它们的拉普拉斯变换 X ( s ) X(s) X(s), Y ( s ) Y(s) Y(s)和传递函数的关系如图1所示。

图1 系统激励、响应以及传递函数之间的关系
图1 系统激励、响应以及传递函数之间的关系

需要说明的是,传递函数不表明系统的物理性质。许多性质不同的物理系统,可以有相同的传递函数。而传递函数不同的物理系统,即使系统的激励相同,其响应也是不相同的,因此,对传递函数的分析和研究,就能统一处理各种物理性质不同的额线性系统。
简而言之,通过对系统微分方程进行拉普拉斯变换,推导出了系统的传递函数 G ( s ) G(s) G(s)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/155717.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【重点文章】服务升级惨痛教训

文章目录 事故解析:避免方法涉及知识 以前怎么接触过大表,所以alter操作我都是一次性执行好几条的,这几条一下子干过去了   结果就是一直在转圈执行,因为alter产生的是表级排它锁,所以有关这几个表的查询更新操作全部处于阻塞…

CTF-栈溢出-基本ROP-【ret2shellcode】

文章目录 ret2shellcodeHTBCyberSanta 2021 sleigh思路exp ret2shellcode 控制程序去执行我们自己填充的代码。 条件: 我们填充的代码的位置具有可执行权限 HTBCyberSanta 2021 sleigh 检查保护 Has RWX segments提示有可读可写可执行的段 main函数 banner函数…

教师资格证的照片是什么底色?一键替换证件照背景色

现在在报考教师资格证时,我们提交个人资料信息都是在网络上进行的,最关键的一步就是要提交证件照,很多小伙伴还都不太情书教师资格证证件照要求,比如规定的证件照背景色是什么颜色,今天就围绕着这个问题给大家详细说明…

赶快来!程序员接单必须知道的六大注意事项!!!

花花世界迷人眼,增加实力多搞钱!对于咱程序员来说,搞钱的最好办法就是网上接单了,相信也有不少小伙伴已经在尝试了吧!但是如何正确的搞钱呢?其中的注意事项你真的了解吗? 本期就和小编一起来看…

使用nacos配置中心管理配置文件时,springcloud程序启动报错,无法找到对应的配置文件(加载到了错误的配置文件)

这里写目录标题 一、场景二、关键依赖三、报错信息四、排查1、bootstrap.yml配置2、查看Nacos配置中心3、重启后程序依旧报错,查看启动日志,发现Nacos加载到了错误的配置文件4、Debug查看源码,企图弄清楚使用错误应用名的原因5、找不到使用依…

DDR3 的相关设计规范(个人总结)

文章目录 阻抗控制布局布线电源处理时序要求 DDR3 的相关设计规范(个人总结) 阻抗控制 DDR3 要严格控制阻抗,单线 50ohm,差分 100ohm,差分一般为时钟、DQS。在走线过程中,尽量减小阻抗跳变的因素,比如:换层(无法避免…

CSS特效012:边框线条环绕流动效果

CSS常用示例100专栏目录 本专栏记录的是经常使用的CSS示例与技巧,主要包含CSS布局,CSS特效,CSS花边信息三部分内容。其中CSS布局主要是列出一些常用的CSS布局信息点,CSS特效主要是一些动画示例,CSS花边是描述了一些CSS…

C++二分查找算法:规划兼职工作

题目 你打算利用空闲时间来做兼职工作赚些零花钱。 这里有 n 份兼职工作,每份工作预计从 startTime[i] 开始到 endTime[i] 结束,报酬为 profit[i]。 给你一份兼职工作表,包含开始时间 startTime,结束时间 endTime 和预计报酬 pro…

Vue3 生命周期

如下是Vue3的生命周期函数图: 一、Vue2生命周期和Vue3声明周期的区别 1. Vue2 中,只要创建Vue实例对象而不需要挂载就可以实现beforeCreate 和 created 生命周期函数。 Vue3中必须要将Vue实例对象挂载完成,所有的准备工作做完,…

V10 桌面版、服务器版系统加固

V10 桌面版、服务器版系统加固 一、 文档说明 本文档中涉及的加固方法主要包括:密码策略配置、防火墙规 则配置、禁用高风险服务等。 二、 V10 桌面版系统加固 2.1 密码策略配置 密码策略包括密码老化控制策略和密码复杂度策略。密码老化 控制策略需要配置/etc…

Git客户端(TortoiseGit)使用

参考文章: https://www.cnblogs.com/xuwenjin/p/8573603.html 【精选】使用TortoiseGit工具进行开发(连接远程仓库进行克隆、拉取、获取、提交、推送、新建/切换/合并分支、解决冲突)_tortoisegit连接远程仓库-CSDN博客 tortoise git 拉取…

二进制的形式在内存中绘制一个对象实例

一、引用类型实例的内存布局 从内存布局的角度来看,一个引用类型的实例由如下图所示的三部分组成:ObjHeader TypeHandle Fields。前置的ObjHeader用来缓存哈希值和同步状态,TypeHandle部分存储类型对应方法表(Method Table&…

2023.11.17 -hivesql调优,数据压缩,数据存储

目录 1.hive命令和参数配置 2.hive数据压缩 3.hive数据存储 0.原文件大小 18.1MB 1.textfile行存储格式, 压缩后size:18MB 2.行存储格式:squencefile ,压缩后大小8.89MB​ 3. 列存储格式 orc - ZILIB ,压缩后大小2.78MB 4.列存储格式 orc-snappy ,压缩后大小3.75MB 5…

设计模式-中介者模式-笔记

Medicator中介者模式 动机(Motivation) 在软件构建过程中,经常会出现多个对象相互关联交际的情况,对象之间常常会维持一种复杂的引用关系,如果遇到一些需求的更改,这种直接的引用关系将面临不断的变化。 …

简单回顾矩阵的相乘(点乘)230101

[[1 0 1][1 1 0]] [[3 0 0 3][2 2 1 3][1 3 1 1]] [[4. 3. 1. 4.][5. 2. 1. 6.]]乘以 c11 a11*b11 a12*b21 a13*b31 1*3 0*2 1*1 4 c12 a11*b12 a12*b22 a13*b32 1*0 0*2 1*3 3 c13a11*b13 a12*b23a13*b33 c14a11*b14 a12*b24a13*b34 c21a21*b11 a22*b21 a23*b…

【iDRAC】突破错误信息壁垒,利用iDRAC提高效率

序 面对旧服务器上的黄色警示灯,工作人员往往陷入困惑。更糟糕的是,如果该服务器转手多次,缺少root用户密码和IP地址,那么要访问服务器iDRAC就更困难了。但是出现问题的硬件蕴含着重要信息,为了解开这个谜团&#xff…

基于STC12C5A60S2系列1T 8051单片的IIC总线器件数模芯片PCF8591实现数模转换应用

基于STC12C5A60S2系列1T 8051单片的IIC总线器件数模芯片PCF8591实现数模转换应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍IIC总线器件数模芯片PCF8591介绍通过按…

windows11编译ffmpeg

安装msys2,直接https://www.msys2.org/上下载exe安装即可,默认路径; 选择msys2-mingw64启动,将下载源替换为中科大 sed -i "s#mirror.msys2.org/#mirrors.ustc.edu.cn/msys2/#g" /etc/pacman.d/mirrorlist*pacman -S…

RocketMQ的适用场景有哪些?

程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一波电子书籍资料,包含《Effective Java中文版 第2版》《深入JAVA虚拟机》,《重构改善既有代码设计》,《MySQL高性能-第3版》&…

Leetcode刷题详解——衣橱整理

1. 题目链接:LCR 130. 衣橱整理 2. 题目描述: 家居整理师将待整理衣橱划分为 m x n 的二维矩阵 grid,其中 grid[i][j] 代表一个需要整理的格子。整理师自 grid[0][0] 开始 逐行逐列 地整理每个格子。 整理规则为:在整理过程中&am…