redis常见问题及解决方案

缓存预热

定义

缓存预热是一种优化方案,它可以提高用户的使用体验。
缓存预热是指在系统启动的时候,先把查询结果预存到缓存中,以便用户后面查询时可以直接从缓存中读取,节省用户等待时间

实现思路

  • 把需要缓存的方法写在初始化方法中,让程序启动时自动加载数据并缓存数据。
  • 把需要缓存的方法挂在某个页面或是后端接口上,手动触发缓存预热。
  • 设置定时任务,定时进行缓存预热。

解决方案

使用 @PostConstruct 初始化白名单数据

缓存雪崩(大量数据同时失效/Redis 崩了,没有数据了)

定义

缓存雪崩是指在短时间内大量缓存同时过期,导致大量请求直接查询数据库, 从而对数据库造成巨大压力,严重情况下可能会导致数据库宕机

解决方案

  • 加锁排队:起到缓冲作用,防止大量请求同时操作数据库,但缺点是增加了系统的响应时间,降低了系统的吞吐量,牺牲一部分用户体验。
  • 设置二级缓存:二级缓存是除了 Redis 本身的缓存,再设置一层缓存,当 Redis 失效后,就先去查询二级缓存
  • 随机化过期时间:为了避免缓存同时过期,可以设置缓存时添加随机时间,这样就可以极大的避免大量缓存同时失效
  • redis 缓存集群实现高可用
    • 主从 + 哨兵
    • Redis 集群
    • 开启Redis 持久化机制 aof / rdb,尽快恢复缓存集群
  • 服务降级
    • Hystrix 或者 sentinel 限流 & 降级
// 缓存原本的失效时间
int exTime = 10 * 60;
// 随机数⽣成类
Random random = new Random();
// 缓存设置
jedis.setex(cacheKey, exTime+random.nextInt(1000) , value);

缓存穿透(黑客攻击/空数据/穿过 Redis 和数据库)

定义

  • 缓存穿透是指查询数据库和缓存都无数据,因此每次请求都会去查询数据库

解决方案

  • **缓存空结果:**对查询的空结果也进行缓存,如果是集合,可以缓存一个空的的集合,如果是缓存单个对象,可以字段标识来区分,避免请求穿透到数据库。
  • **布隆过滤器处理:**将所有可能对应的数据为空的 key 进行统一的存放,并在请求前做拦截,避免请求穿透到数据库(这样的方式实现起来相对麻烦,比较适合命中不高,但是更新不频繁的数据)。
  • 双锁锁策略机制
package com.redis.redis01.service;

import com.redis.redis01.bean.RedisBs;
import com.redis.redis01.mapper.RedisBsMapper;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import javax.annotation.Resource;
import java.beans.Transient;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;

@Slf4j
@Service
public class RedisBsService {

    //定义key前缀/命名空间
    public static final String CACHE_KEY_USER = "user:";
    @Autowired
    private RedisBsMapper mapper;
    @Resource
    private RedisTemplate<String, Object> redisTemplate;
    private static ReentrantLock lock = new ReentrantLock();

    /**
     * 业务逻辑没有写错,对于中小长(qps<=1000)可以使用,但是大厂不行:大长需要采用双检加锁策略
     *
     * @param id
     * @return
     */
    @Transactional
    public RedisBs findUserById(Integer id,int type,int qps) {
        //qps<=1000
        if(qps<=1000){
            return qpsSmall1000(id);
        }
        //qps>1000
        return qpsBig1000(id, type);
    }

    /**
     * 加强补充,避免突然key失效了,或者不存在的key穿透redis打爆mysql,做一下预防,尽量不出现缓存击穿的情况,进行排队等候
     * @param id
     * @param type 0使用synchronized重锁,1ReentrantLock轻量锁
     * @return
     */
    private RedisBs qpsBig1000(Integer id, int type) {
        RedisBs redisBs = null;
        String key = CACHE_KEY_USER + id;
        //1先从redis里面查询,如果有直接返回,没有再去查mysql
        redisBs = (RedisBs) redisTemplate.opsForValue().get(key);
        if (null == redisBs) {
            switch (type) {
                case 0:
                    //加锁,假设请求量很大,缓存过期,大厂用,对于高qps的优化,进行加锁保证一个请求操作,让外面的redis等待一下,避免击穿mysql
                    synchronized (RedisBsService.class) {
                        //第二次查询缓存目的防止加锁之前刚好被其他线程缓存了
                        redisBs = (RedisBs) redisTemplate.opsForValue().get(key);
                        if (null != redisBs) {
                            //查询到数据直接返回
                            return redisBs;
                        } else {
                            //数据缓存
                            //查询mysql,回写到redis中
                            redisBs = mapper.findUserById(id);
                            if (null == redisBs) {
                                // 3 redis+mysql都没有数据,防止多次穿透(redis为防弹衣,mysql为人,穿透直接伤人,就是直接访问mysql),优化:记录这个null值的key,列入黑名单或者记录或者异常
                                return new RedisBs(-1, "当前值已经列入黑名单");
                            }
                            //4 mysql有,回写保证数据一致性
                            //setifabsent
                            redisTemplate.opsForValue().setIfAbsent(key, redisBs,7l, TimeUnit.DAYS);
                        }
                    }
                    break;
                case 1:
                    //加锁,大厂用,对于高qps的优化,进行加锁保证一个请求操作,让外面的redis等待一下,避免击穿mysql
                    lock.lock();
                    try {
                        //第二次查询缓存目的防止加锁之前刚好被其他线程缓存了
                        redisBs = (RedisBs) redisTemplate.opsForValue().get(key);
                        if (null != redisBs) {
                            //查询到数据直接返回
                            return redisBs;
                        } else {
                            //数据缓存
                            //查询mysql,回写到redis中
                            redisBs = mapper.findUserById(id);
                            if (null == redisBs) {
                                // 3 redis+mysql都没有数据,防止多次穿透(redis为防弹衣,mysql为人,穿透直接伤人,就是直接访问mysql),优化:记录这个null值的key,列入黑名单或者记录或者异常
                                return new RedisBs(-1, "当前值已经列入黑名单");
                            }
                            //4 mysql有,回写保证数据一致性
                            redisTemplate.opsForValue().set(key, redisBs);
                        }
                    } catch (Exception e) {
                        e.printStackTrace();
                    } finally {
                        //解锁
                        lock.unlock();
                    }
            }
        }
        return redisBs;
    }
    private RedisBs qpsSmall1000(Integer id) {
        RedisBs redisBs = null;
        String key = CACHE_KEY_USER + id;
        //1先从redis里面查询,如果有直接返回,没有再去查mysql
        redisBs = (RedisBs) redisTemplate.opsForValue().get(key);
        if (null == redisBs) {
            //2查询mysql,回写到redis中
            redisBs = mapper.findUserById(id);
            if (null == redisBs) {
                // 3 redis+mysql都没有数据,防止多次穿透(redis为防弹衣,mysql为人,穿透直接伤人,就是直接访问mysql),优化:记录这个null值的key,列入黑名单或者记录或者异常
                return new RedisBs(-1, "当前值已经列入黑名单");
            }
            //4 mysql有,回写保证数据一致性
            redisTemplate.opsForValue().set(key, redisBs);
        }
        return redisBs;
    }

}
package com.redis.redis01.service;

import com.google.common.collect.Lists;
import com.redis.redis01.bean.RedisBs;
import com.redis.redis01.mapper.RedisBsMapper;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;

import javax.annotation.Resource;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.locks.ReentrantLock;

@Slf4j
@Service
public class BitmapService {
    @Resource
    private RedisTemplate<String, Object> redisTemplate;
    private static ReentrantLock lock = new ReentrantLock();
    @Autowired
    private RedisBsMapper redisBsMapper;

    /**
     * 场景一:布隆过滤器解决缓存穿透问题(null/黑客攻击);利用redis+bitmap实现
     * 有可能有,没有一定没有
     *                                                    无-------------》mysql查询
     *                     有--------》redis查询----------》有-----------》返回
     * 请求-----》布隆过滤器-----------》
     *                      无-------终止
     *
     * @param type:0初始化,1常规查询
     */
    public void booleanFilterBitmap(int type, Integer id) {
        
        switch (type) {
            case 0://初始化数据
                for (int i = 0; i < 10; i++) {
                    RedisBs initBs = RedisBs.builder().id(i).name("赵三" + i).phone("1580080569" + i).build();
                    //1 插入数据库
                    redisBsMapper.insert(initBs);
                    //2 插入redis
                    redisTemplate.opsForValue().set("customer:info" + i, initBs);
                }
                //3 将用户id插入布隆过滤器中,作为白名单
                for (int i = 0; i < 10; i++) {
                    String booleanKey = "customer:booleanFilter:" + i;
                    //3.1 计算hashvalue
                    int abs = Math.abs(booleanKey.hashCode());
                    //3.2 通过abs和2的32次方取余,获得布隆过滤器/bitmap对应的下标坑位/index
                    long index = (long) (abs % Math.pow(2, 32));
                    log.info("坑位:{}", index);
                    //3.3 设置redis里面的bitmap对应类型的白名单
                    redisTemplate.opsForValue().setBit("whiteListCustomer", index, true);
                }
                break;
            case 1://常规查询
                //1 获取当前传过来的id对应的哈希值
                String inputBooleanKey = "customer:booleanFilter:" + id;
                int abs = Math.abs(inputBooleanKey.hashCode());
                long index = (long) (abs % Math.pow(2, 32));
                Boolean whiteListCustomer = redisTemplate.opsForValue().getBit("whiteListCustomer", index);
                //加入双检锁
                //加锁,大厂用,对于高qps的优化,进行加锁保证一个请求操作,让外面的redis等待一下,避免击穿mysql
                lock.lock();
                try {
                    if (null == whiteListCustomer) {
                        whiteListCustomer = redisTemplate.opsForValue().getBit("whiteListCustomer", index);
                        if (null != whiteListCustomer && whiteListCustomer) {//布隆过滤器中存在,则可能存在
                            //2 查找redis
                            Object queryCustomer = redisTemplate.opsForValue().get("customer:info" + id);
                            if (null != queryCustomer) {
                                log.info("返回客户信息:{}", queryCustomer);
                                break;
                            } else {
                                //3 redis没有查找mysql
                                RedisBs userById = redisBsMapper.findUserById(id);
                                if (null != userById) {
                                    log.info("返回客户信息:{}", queryCustomer);
                                    redisTemplate.opsForValue().set("customer:info" + id, userById);
                                    break;
                                } else {
                                    log.info("当前客户信息不存在:{}", id);
                                    break;
                                }
                            }
                        } else {//redis没有,去mysql中查询
                            //3 redis没有查找mysql
                            RedisBs userById = redisBsMapper.findUserById(id);
                            if (null != userById) {
                                log.info("返回客户信息:{}", userById);
                                redisTemplate.opsForValue().set("customer:info" + id, userById);
                                break;
                            } else {
                                log.info("当前客户信息不存在:{}", id);
                                break;
                            }
                        }

                    }
                } finally {
                    lock.unlock();
                }
                log.info("当前客户信息不存在:{}", id);

                break;
            default:
                break;
        }
    }
}

缓存击穿(热点数据/刚失效/定点打击)

定义

缓存击穿是指某个经常使用的缓存,在某一个时刻恰好失效了(例如缓存过期),并且此时刚好有大量的并发请求,这些请求就会给数据库造成巨大的压力

解决方案

  • **加锁排队:**和处理缓存雪崩的加锁类似,都是在查询数据库的时候加锁排队,缓存操作请求以此来减少服务器的运行压力。
  • **设置永不过时:**对于某些经常使用的缓存,我们可以设置为永不过期,这样就能保证缓存的稳定性,但要注意在数据更改后,要及时更新此热点缓存,否则就会造成查询结果误差。

总结
image.png

脑裂

分布式session

分布式锁

  • 分布式锁需要的条件和刚需
    • 独占性
      • 任何时刻有且只有一个线程持有这个锁
    • 高可用
      • 若redis集群环境下,不能因为某一个节点挂了而出现获取锁和释放锁失败的情况
      • 高并发请求下,依旧性能很好
    • 防死锁
      • 不能出现死锁问题,必须有超时重试机制或者撤销操作,有个终止跳出的途径
    • 不乱抢
      • 防止张冠李戴,只能解锁自己的锁,不能把别人的锁给释放了
    • 重入性
      • 同一节点的同一线程如果获得锁之后,他可以再次获取这个锁

v 8.0 其实面对不是特别高的并发场景足够用了,单机redis也够用了

  • 要兼顾锁的重入性
    • setnx不满足了,需要hash结构的hset
  • 上锁和解锁都用 Lua 脚本来实现原子性
  • 引入工厂模式 DistributedLockFactory, 实现 Lock 接口,实现redis的可重入锁
    • lock() 加锁的关键逻辑
      • 加锁 实际上就是在redis中,给Key键设置一个值,为避免死锁,并给定一个过期时间
      • 自旋
      • 续期
    • unlock() 解锁关键逻辑
    • 将 Key 键删除,但是也不能乱删,只能自己删自己的锁
  • 实现自动续期功能的完善,后台自定义扫描程序,如果规定时间内没有完成业务逻辑,会调用加钟自动续期的脚本
    @Autowired
    private DistributedLockFactory distributedLockFactory;


    /**
     * v8.0  实现自动续期功能的完善,后台自定义扫描程序,如果规定时间内没有完成业务逻辑,会调用加钟自动续期的脚本
     *
     * @return
     */
    public String sale() {
        String retMessage = "";

        Lock redisLock = distributedLockFactory.getDistributedLock("redis");
        redisLock.lock();
        try {
            //1 查询库存信息
            String result = stringRedisTemplate.opsForValue().get("inventory001");
            //2 判断库存是否足够
            Integer inventoryNumber = result == null ? 0 : Integer.parseInt(result);
            //3 扣减库存
            if (inventoryNumber > 0) {
                stringRedisTemplate.opsForValue().set("inventory001", String.valueOf(--inventoryNumber));
                retMessage = "成功卖出一个商品,库存剩余: " + inventoryNumber;

                // 演示自动续期的的功能
//                try {
//                    TimeUnit.SECONDS.sleep(120);
//                } catch (InterruptedException e) {
//                    e.printStackTrace();
//                }
            } else {
                retMessage = "商品卖完了,o(╥﹏╥)o";
            }
        } finally {
            redisLock.unlock();
        }
        return retMessage + "\t" + "服务端口号:" + port;
    }


    /**
     * v7.0     兼顾锁的可重入性   setnx不满足了,需要hash结构的hset
     * 上锁和解锁都用 Lua 脚本实现原子性
     * 引入工厂模式 DistributedLockFactory    实现Lock接口 ,实现 redis的可重入锁
     *
     * @return
     */
//    //private Lock redisDistributedLock = new RedisDistributedLock(stringRedisTemplate, "xfcyRedisLock");
//
//    public String sale() {
//        String retMessage = "";
//
//        Lock redisLock = distributedLockFactory.getDistributedLock("redis");
//        redisLock.lock();
//
//        //redisDistributedLock.lock();
//        try {
//            //1 查询库存信息
//            String result = stringRedisTemplate.opsForValue().get("inventory001");
//            //2 判断库存是否足够
//            Integer inventoryNumber = result == null ? 0 : Integer.parseInt(result);
//            //3 扣减库存
//            if (inventoryNumber > 0) {
//                stringRedisTemplate.opsForValue().set("inventory001", String.valueOf(--inventoryNumber));
//                retMessage = "成功卖出一个商品,库存剩余: " + inventoryNumber;
//                System.out.println(retMessage);
//
//                // 测试可重入性
//                //testReEntry();
//
//            } else {
//                retMessage = "商品卖完了,o(╥﹏╥)o";
//            }
//        } finally {
//            redisLock.unlock();
//            //redisDistributedLock.unlock();
//        }
//        return retMessage + "\t" + "服务端口号:" + port;
//    }
//
//    private void testReEntry() {
//        Lock redisLock = distributedLockFactory.getDistributedLock("redis");
//        redisLock.lock();
//
//        //redisDistributedLock.lock();
//        try {
//            System.out.println("测试可重入锁");
//        } finally {
//            redisLock.unlock();
//            //redisDistributedLock.unlock();
//        }
//    }


package com.xfcy.mylock;

import cn.hutool.core.util.IdUtil;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;

import java.util.concurrent.locks.Lock;

/**
 * @author 晓风残月Lx
 * @date 2023/4/1 22:14
 */
@Component
public class DistributedLockFactory {

    @Autowired
    private StringRedisTemplate stringRedisTemplate;
    private String lockName;
    private String uuidValue;

    public DistributedLockFactory() {
        this.uuidValue = IdUtil.simpleUUID();
    }

    public Lock getDistributedLock(String lockType) {
        if (lockType == null) {
            return null;
        }
        if (lockType.equalsIgnoreCase("REDIS")) {
            this.lockName = "xfcyRedisLock";
            return new RedisDistributedLock(stringRedisTemplate, lockName, uuidValue);
        }else if (lockType.equalsIgnoreCase("ZOOKEEPER")) {
            this.lockName = "xfcyZookeeperLock";
            // TODO zoookeeper 版本的分布式锁
            return null;
        }else if (lockType.equalsIgnoreCase("MYSQL")){
            this.lockName = "xfcyMysqlLock";
            // TODO MYSQL 版本的分布式锁
            return null;
        }
        return null;
    }

}

package com.xfcy.mylock;

import cn.hutool.core.util.IdUtil;
import com.sun.org.apache.xpath.internal.operations.Bool;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.script.DefaultRedisScript;

import java.util.Arrays;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;

/**
 * @author 晓风残月Lx
 * @date 2023/4/1 21:38
 * 自研的redis分布式锁,实现 Lock 接口
 */
// @Component 引入DistributedLockFactory工厂模式,从工厂获得即可
public class RedisDistributedLock implements Lock {

    @Autowired
    private StringRedisTemplate stringRedisTemplate;

    private String lockName;    // KEYS[1]
    private String uuidValue;   // ARGV[1]
    private long expireTime;    // ARGV[2]

    public RedisDistributedLock(StringRedisTemplate stringRedisTemplate, String lockName, String uuidValue) {
        this.stringRedisTemplate = stringRedisTemplate;
        this.lockName = lockName;
        this.uuidValue = uuidValue + ":" + Thread.currentThread().getId();
        this.expireTime = 30L;
    }

    @Override
    public void lock() {
        tryLock();
    }

    @Override
    public boolean tryLock() {
        try {
            tryLock(-1L, TimeUnit.SECONDS);
        } catch (InterruptedException e) {
           e.printStackTrace();
        }
        return false;
    }

    @Override
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        if (time == -1L) {
            String script = "if redis.call('exists',KEYS[1]) == 0 or redis.call('hexists',KEYS[1],ARGV[1]) == 1 then " +
                    "redis.call('hincrby',KEYS[1],ARGV[1],1)  " +
                    "redis.call('expire',KEYS[1],ARGV[2]) " +
                    "return 1 " +
                    "else " +
                    "return 0 " +
                    "end";
            System.out.println("lockName = " + lockName +"\t" + "uuidValue = " + uuidValue);
            while (!stringRedisTemplate.execute(new DefaultRedisScript<>(script, Boolean.class), Arrays.asList(lockName), uuidValue, String.valueOf(expireTime))) {
                // 暂停 60ms
                Thread.sleep(60);
            }
            // 新建一个后台扫描程序,来监视key目前的ttl,是否到我们规定的 1/2 1/3 来实现续期
            resetExpire();
            return true;
        }
        return false;
    }

    @Override
    public void unlock() {
        String script = "if redis.call('HEXISTS',KEYS[1],ARGV[1]) == 0 then " +
                "return nil " +
                "elseif redis.call('HINCRBY',KEYS[1],ARGV[1],-1) == 0 then  " +
                "return redis.call('del',KEYS[1]) " +
                "else  " +
                "return 0 " +
                "end";
        // nil = false  1 = true  0 = false
        Long flag = stringRedisTemplate.execute(new DefaultRedisScript<>(script, Long.class), Arrays.asList(lockName), uuidValue, String.valueOf(expireTime));
        if (null == flag) {
            throw new RuntimeException("this lock doesn't exists0");
        }
    }

    private void resetExpire() {
        String script = "if redis.call('HEXISTS',KEYS[1],ARGV[1]) == 1 then " +
                "return redis.call('expire',KEYS[1],ARGV[2]) " +
                "else " +
                "return 0 " +
                "end";
        new Timer().schedule(new TimerTask() {
            @Override
            public void run() {
                if (stringRedisTemplate.execute(new DefaultRedisScript<>(script, Boolean.class), Arrays.asList(lockName), uuidValue, String.valueOf(expireTime))) {
                    resetExpire();
                }
            }
        }, (this.expireTime * 1000) / 3);
    }


    // 下面两个用不上
    // 下面两个用不上
    // 下面两个用不上

    @Override
    public void lockInterruptibly() throws InterruptedException {

    }

    @Override
    public Condition newCondition() {
        return null;
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/153424.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux三剑客:grep的基本使用

目录 grep介绍 什么是grep和egrep 使用grep 命令格式 命令功能 命令参数 grep配合正则表达式使用 认识正则 基本正则表达式 匹配字符 配置次数 位置锚定&#xff1a;定位出现的位置 分组和后向引用 作为学习一名计算机专业的学生&#xff0c;我想Linux应该需要了解…

HTML5学习系列之实用性标记

HTML5学习系列之实用性标记 前言实用性标记高亮显示进度刻度时间联系信息显示方向换行断点标注 总结 前言 学习记录 实用性标记 高亮显示 mark元素可以进行高亮显示。 <p><mark>我感冒了</mark></p>进度 progress指示某项任务的完成进度。 <p…

Python基础教程之模块介绍及用法,适合新手小白的入门教程~

文章目录 什么是模块&#xff1f;创建模块使用模块模块中的变量为模块命名重命名模块内建模块使用 dir() 函数从模块导入 什么是模块&#xff1f; 请思考与代码库类似的模块。 模块是包含一组函数的文件&#xff0c;希望在应用程序中引用。 创建模块 如需创建模块&#xff…

(C++类的初始化和清理)构造函数与析构函数

目录 1. 类的六个默认成员函数2. 构造函数&#xff08;Constructor&#xff09;2.1 概念2.2 特性 3. 析构函数&#xff08;Destructor&#xff09;3.1 概念3.2 特性 1. 类的六个默认成员函数 一个类中如果什么成员都没有&#xff0c;称为空类 class Date {};但是这并不代表空…

Windows 系统彻底卸载 SQL Server 通用方法

Windows 系统彻底卸载 SQL Server 通用方法 无论什么时候&#xff0c;SQL Server 的安装和卸载都是一件让我们头疼的事情。因为不管是 SQL Server 还是 MySQL 的数据库&#xff0c;当我们在使用数据库时因为未知原因出现问题&#xff0c;想要卸载重装时&#xff0c;如果数据库…

如何分析伦敦金的价格走势预测?

伦敦金作为国际黄金市场的重要指标&#xff0c;其价格走势一直备受投资者关注。但是&#xff0c;黄金市场的价格变化受到多种因素的影响&#xff0c;因此要准确预测伦敦金的价格走势并非易事。在本文中&#xff0c;将介绍一些常用的方法和工具&#xff0c;帮助您分析伦敦金的价…

Docker-compose 下载安装测试完成

源文件-http://t.csdnimg.cn/7NxHchttp://t.csdnimg.cn/7NxHc 1 docker-compose说明 Docker Compose 是Docker的组装工具&#xff0c;用于创建和调试多个Docker容器&#xff0c;并在同一个Docker主机上运行它们。Docker Compose基于YAML文件&#xff0c;描述多个容器之间的相…

在Spring Boot中使用Redis的发布订阅功能

Redis的发布订阅模式是一种消息传递模式&#xff0c;它允许多个订阅者订阅一个或多个频道&#xff0c;同时一个发布者可以将消息发布到指定的频道。这种模式在分布式系统中非常有用&#xff0c;可以解决以下问题&#xff1a; 实时消息传递&#xff1a;发布订阅模式可以用于实时…

django——公众号服务开发

开发过程 项目背景&#xff1a;功能描述&#xff1a;参考文档以及调试链接&#xff1a;技术架构&#xff1a;准备工作公众号的注册以及设置域名的准备服务器的租赁内网穿透微信支付的注册 功能开发细节微信公众号自定义菜单获取access_token创建菜单查询菜单删除菜单 个性化菜单…

Nginx反向代理与负载均衡与504错误

Nginx反向代理与负载均衡概念简介 关于代理 什么是代理 类似中介 在没有代理模式的情况下&#xff0c;客户端和Nginx服务端&#xff0c;都是客户端直接请求服务端&#xff0c;服务端直接响应客户端。 那么在互联网请求里面&#xff0c;客户端往往无法直接向服务端发起请求…

【LeetCode刷题-滑动窗口】--76.最小覆盖子串

76.最小覆盖子串 class Solution {//建立两个hashMap&#xff0c;ori用于存储目标字符串t中每个字符的出现次数//cnt用于存储当前窗口中每个字符的出现次数Map<Character,Integer> ori new HashMap<Character,Integer>();Map<Character,Integer> cnt new H…

PyTorch:计算图

在深度学习和神经网络领域&#xff0c;计算图是一种重要的概念&#xff0c;它在理解和实现神经网络模型的训练过程中起着至关重要的作用。PyTorch作为一款优秀的深度学习框架&#xff0c;自然也包含了计算图的概念和实现。本文将深入探讨PyTorch中计算图的原理、应用以及对深度…

mp4封装格式各box类型讲解及IBP帧计算

作者 —— 靑い空゛ 出处&#xff1a;http://www.cnblogs.com/ailumiyana/ 音视频流媒体高级开发教程 MP4文件封装格式&#xff0c;对应的标准为ISO/IEC 14496-12&#xff0c;即信息技术 视听对象编码的第12部分 ISO 基本媒体文件格式&#xff08;Information technology Codi…

最新版仿东郊到家小程序源码 上门服务小程序源码

最新版仿东郊到家小程序源码 上门服务小程序源码 1、数据概况&#xff08;新增业务城市用户投票功能&#xff0c;更加直观的查看业务城市的关注度、人气和影响力,促进业务开展&#xff09; 2、数据概况 &#xff08;增加可视化数据大盘&#xff0c;代理商端可查看自己下面的技…

【java学习—十五】线程的同步与死锁(5)

文章目录 1. 多线程产生的问题2. Synchronized 的使用方法3. 线程的死锁问题 1. 多线程产生的问题 问题&#xff1a; 同一个账户&#xff0c;支付宝转账&#xff0c;微信转账。两个手机&#xff0c;一个手机开支付宝&#xff0c;另一个手机开微信。假设账户上有3000元&#xff…

OCC教学:拓扑

拓扑&#xff1a;1.介绍 几何限制 OCCT 曲面支持矩形修剪。布尔运算后可能会出现非矩形域。 如何存储剪切操作的结果&#xff1f; 拓扑的目的 一般来说&#xff0c;拓扑是描述对象局限性的一种手段。 OCC拓扑被用于用于描述&#xff1a; 物体的边界&#xff1b;对象之…

Mars3d-vue最简项目模板集成使用Mars3d的UI控件样板

备注说明&#xff1a; 1.小白可看步骤一二&#xff0c;进阶小白可直接看步骤三 步骤一&#xff1a;新建文件夹<uitest>&#xff0c;在mars3d仓库拉一份最简项目模板&#xff1a; git clone mars3d-vue-template: Vue3.x 技术栈下的Mars3D项目模板 步骤二&#xff1a;运…

01_SHELL编程之变量定义(一)

SHELL编程 该课程主要包括以下内容&#xff1a; ① Shell的基本语法结构 如&#xff1a;变量定义、条件判断、循环语句(for、until、while)、分支语句、函数和数组等&#xff1b; ② 基本正则表达式的运用&#xff1b; ③ 文件处理三剑客&#xff1a;grep、sed、awk工具的使用&…

最好用的Python库推荐总结,每一个都用处很大!

文章目录 分词 - jieba词云库 - wordcloud可视化进度条 - tpdm优美的表格 - PrettyTable多进程 - multiprocessing多线程 - threading谷歌翻译 - googletrans重复回调 - retrying游戏开发 - pygame绘图教程 - turtle数据分析 - pandas算法加密 - pycryto操作 win 电脑 - pywin3…

2—10岁女童羽绒服,黑色长款也太好看了吧

冬天怎么能没有一件暖呼呼的羽绒服呢&#xff1f; 黑色长款羽绒服也赞了吧 大长款连帽&#xff0c;防风保暖设计 时尚与美观度都兼具呢&#xff01;好穿又耐穿&#xff01;