三国杀中的概率学问题3——王荣

前言

本文是三国杀中的概率学问题系列文章中的一篇,将详细讨论王荣吉占的期望摸牌数问题。并加上连续情形作为拓展。

值得说明的是,本文的思路受到了一篇文章的启发,在此特别鸣谢,这是文章的链接。

王荣吉占的期望摸牌数

在这里插入图片描述
王荣的二技能吉占很有意思,展示牌堆顶的一张牌,然后猜测下一张牌比这张牌大还是比这张牌小,猜对了就继续猜,直到猜错为止,然后最终可以获得展示的所有牌。所以即便第一次就猜错,也能拿到2张牌(第一张展示的牌,和猜错的这张牌)。为了能够摸更多的牌,我们需要采取贪心的猜牌策略,保证自己这次猜对的概率最大。也就是说,在展示的牌为1-6时,我们选择猜大,8-13时猜小,7的时候由于猜大和猜小的概率一样,所以猜大猜小都可以。

离散情形

为了使得模型更一般化,将13种不同的点数改为n种不同的点数。那么问题可以重新描述如下:

问题:牌有1~n这n种点数,我们先亮出第一张牌,然后猜测下一张牌跟这一张牌的大小关系,然后亮出下一张牌,若猜对则继续猜,猜错就停止。求在最优策略下平均能亮出几张牌。

由于牌堆为理想牌堆,不管怎么拿牌,每种点数的牌的张数都是一样的,所以最优策略即为:若当前牌的点数小于等于 n + 1 2 \frac{n+1}{2} 2n+1,就猜大,否则猜小。

我们令 f ( x ) f(x) f(x)表示当前牌的点数为 x x x时,后面会亮出的牌数的数学期望。那么,我们可以得到下面的公式:

f ( x ) = { ∑ i = x + 1 n 1 n f ( i ) + 1 0 ≤ x ≤ n + 1 2 ∑ i = 1 x − 1 1 n f ( i ) + 1 n + 1 2 < x ≤ 1 f(x)=\begin{cases} \sum_{i=x+1}^n{\frac{1}{n}f(i)+1} &0\leq x\leq\frac{n+1}{2} \\ \sum_{i=1}^{x-1}{\frac{1}{n}f(i)+1} & \frac{n+1}{2}<x\leq 1 \end{cases} f(x)={i=x+1nn1f(i)+1i=1x1n1f(i)+10x2n+12n+1<x1

解释一下这个公式,当前牌的点数为 x x x时,首先会亮出下一张牌,这是+1的含义。然后下一张牌是每个点数的概率都是 1 n \frac{1}{n} n1,把猜对了能亮出的牌数乘以概率累加起来,就是猜对了之后期望亮出的牌数。分成两段也仅仅是因为猜测策略的原因。

我们要求的是平均能亮出几张牌,假设这个数量为 E E E,那么 E = 1 n ∑ i = 1 n f ( i ) + 1 E=\frac{1}{n}\sum_{i=1}^n{f(i)}+1 E=n1i=1nf(i)+1

首先先亮出一张牌,然后这张牌的点数有n种可能性,即有 1 n \frac{1}{n} n1的概率为i。如果第一张牌是i的话,则期望亮出的牌数就是 f ( i ) f(i) f(i)。于是我们把概率乘以亮出牌数累加起来,就是接下来会亮出的牌数,即 1 n ∑ i = 1 n f ( i ) \frac{1}{n}\sum_{i=1}^n{f(i)} n1i=1nf(i)。再加上第一张亮出的牌,就是 1 n ∑ i = 1 n f ( i ) + 1 \frac{1}{n}\sum_{i=1}^n{f(i)}+1 n1i=1nf(i)+1了。 E E E就是我们想求的答案。

接下来我们来算出 f ( x ) f(x) f(x)的具体值。

我们设出 f ( x ) f(x) f(x)的前缀和。令 F ( x ) = ∑ i = 1 n f ( i ) F(x)=\sum_{i=1}^n{f(i)} F(x)=i=1nf(i)

n + 1 2 < x ≤ 1 \frac{n+1}{2}<x\leq 1 2n+1<x1时:

f ( x ) = 1 n F ( x − 1 ) + 1 f(x)=\frac{1}{n}F(x-1)+1 f(x)=n1F(x1)+1

F ( x − 1 ) = n f ( x ) + n F(x-1)=nf(x)+n F(x1)=nf(x)+n

x + 1 x+1 x+1代入 x x x得:

F ( x ) = n f ( x + 1 ) + n F(x)=nf(x+1)+n F(x)=nf(x+1)+n

两式相减得:

f ( x ) = n f ( x + 1 ) − n f ( x ) f(x)=nf(x+1)-nf(x) f(x)=nf(x+1)nf(x)

于是得到了 f ( x ) f(x) f(x)的递推式

f ( x + 1 ) = n + 1 n f ( x ) f(x+1)=\frac{n+1}{n}f(x) f(x+1)=nn+1f(x)

由于 n n n为常数,于是我们发现在 n + 1 2 < x ≤ 1 \frac{n+1}{2}<x\leq 1 2n+1<x1上, f ( x ) f(x) f(x)是等比数列。

类似地,在 0 ≤ x ≤ n + 1 2 0\leq x\leq\frac{n+1}{2} 0x2n+1上求得 f ( x + 1 ) = n n + 1 f ( x ) f(x+1)=\frac{n}{n+1}f(x) f(x+1)=n+1nf(x)

可以发现, f ( x ) f(x) f(x)是一列以 n + 1 2 \frac{n+1}{2} 2n+1为对称轴,先递减,后递增的两段等比数列,公比分别为 n n + 1 \frac{n}{n+1} n+1n n + 1 n \frac{n+1}{n} nn+1

等比数列的求和公式为 S = a 1 ∗ q n − 1 q − 1 S=a_1*\frac{q^n-1}{q-1} S=a1q1qn1,现在公比已经知道了,所以要求首项。 f ( n + 1 2 ) f(\frac{n+1}{2}) f(2n+1)位于两段的连接处,可以让它作为两段等比数列的首项。现在我们来求 f ( n + 1 2 ) f(\frac{n+1}{2}) f(2n+1)

我们不妨假设 n n n为奇数,这样 x = n + 1 2 x=\frac{n+1}{2} x=2n+1在公式的两段上都可以成立。于是有

f ( n + 1 2 ) = ∑ i = n + 3 2 n 1 n f ( i ) + 1 = ∑ i = 1 n − 1 2 1 n f ( i ) + 1 f(\frac{n+1}{2})=\sum_{i=\frac{n+3}{2}}^n{\frac{1}{n}f(i)+1}=\sum_{i=1}^{\frac{n-1}{2}}{\frac{1}{n}f(i)+1} f(2n+1)=i=2n+3nn1f(i)+1=i=12n1n1f(i)+1

( 2 + 1 n ) f ( n + 1 2 ) = 1 n F ( n ) + 2 (2+\frac{1}{n})f(\frac{n+1}{2})=\frac{1}{n}F(n)+2 (2+n1)f(2n+1)=n1F(n)+2

f ( n + 1 2 ) = 1 2 n + 1 F ( n ) + 2 n 2 n + 1 f(\frac{n+1}{2})=\frac{1}{2n+1}F(n)+\frac{2n}{2n+1} f(2n+1)=2n+11F(n)+2n+12n

利用 f ( x ) f(x) f(x)的对称性,以及等比数列求和公式,有

F ( n ) = ∑ i = 1 n − 1 2 f ( i ) + ∑ i = n + 1 2 n f ( i ) = ∑ i = n + 3 2 n f ( i ) + ∑ i = n + 1 2 n f ( i ) = n + 1 n f ( n + 1 2 ) ( n + 1 n ) n − 1 2 − 1 n + 1 n − 1 + f ( n + 1 2 ) ( n + 1 n ) n + 1 2 − 1 n + 1 n − 1 = [ 2 n ( n + 1 n ) n + 1 2 − 2 n − 1 ] f ( n + 1 2 ) F(n)=\sum_{i=1}^{\frac{n-1}{2}}{f(i)}+\sum_{i=\frac{n+1}{2}}^n{f(i)}=\sum_{i=\frac{n+3}{2}}^n{f(i)}+\sum_{i=\frac{n+1}{2}}^n{f(i)}=\frac{n+1}{n}f(\frac{n+1}{2})\frac{(\frac{n+1}{n})^{\frac{n-1}{2}}-1}{\frac{n+1}{n}-1}+f(\frac{n+1}{2})\frac{(\frac{n+1}{n})^{\frac{n+1}{2}}-1}{\frac{n+1}{n}-1}=[2n(\frac{n+1}{n})^{\frac{n+1}{2}}-2n-1]f(\frac{n+1}{2}) F(n)=i=12n1f(i)+i=2n+1nf(i)=i=2n+3nf(i)+i=2n+1nf(i)=nn+1f(2n+1)nn+11(nn+1)2n11+f(2n+1)nn+11(nn+1)2n+11=[2n(nn+1)2n+12n1]f(2n+1)

联立两式
{ f ( n + 1 2 ) = 1 2 n + 1 F ( n ) + 2 n 2 n + 1 F ( n ) = [ 2 n ( n + 1 n ) n + 1 2 − 2 n − 1 ] f ( n + 1 2 ) \begin{cases} f(\frac{n+1}{2})=\frac{1}{2n+1}F(n)+\frac{2n}{2n+1}\\ F(n)=[2n(\frac{n+1}{n})^{\frac{n+1}{2}}-2n-1]f(\frac{n+1}{2}) \end{cases} {f(2n+1)=2n+11F(n)+2n+12nF(n)=[2n(nn+1)2n+12n1]f(2n+1)

解得
{ f ( n + 1 2 ) = n 2 n + 1 − n ( n + 1 n ) n + 1 2 F ( n ) = n [ 2 n 2 n + 1 ( n + 1 n ) n + 1 2 − 1 ] 1 − n 2 n + 1 ( n + 1 n ) n + 1 2 \begin{cases} f(\frac{n+1}{2})=\frac{n}{2n+1-n(\frac{n+1}{n})^{\frac{n+1}{2}}}\\ F(n)=\frac{n[\frac{2n}{2n+1}(\frac{n+1}{n})^{\frac{n+1}{2}}-1]}{1-\frac{n}{2n+1}(\frac{n+1}{n})^{\frac{n+1}{2}}} \end{cases} f(2n+1)=2n+1n(nn+1)2n+1nF(n)=12n+1n(nn+1)2n+1n[2n+12n(nn+1)2n+11]

于是,可以得到

E = ∑ i = 1 n 1 n f ( i ) + 1 = 1 n F ( n ) + 1 = 1 2 n + 1 n ( n n + 1 ) n + 1 2 − 1 E=\sum_{i=1}^{n}\frac{1}{n}f(i)+1=\frac{1}{n}F(n)+1=\frac{1}{\frac{2n+1}{n}(\frac{n}{n+1})^\frac{n+1}{2}-1} E=i=1nn1f(i)+1=n1F(n)+1=n2n+1(n+1n)2n+111

n = 13 n=13 n=13时, E ≈ 4.232 E\approx4.232 E4.232

n → ∞ n\to\infty n时, l i m n → ∞ E = l i m n → ∞ 1 2 ( 1 − 1 n + 1 ) n + 1 2 − 1 = 1 2 e − 1 2 − 1 ≈ 4.69 lim_{n\to\infty}E=lim_{n\to\infty}\frac{1}{2(1-\frac{1}{n+1})^{\frac{n+1}{2}}-1}=\frac{1}{2e^{-\frac{1}{2}}-1}\approx4.69 limnE=limn2(1n+11)2n+111=2e21114.69

至此,原题就解出来了。

连续情形

我们再做一点点扩展,看看在 n n n趋于无穷时的情况。现在我们把问题转化为连续的情况。

问题:在[0,1]区间上的均匀分布总体进行依次采样,约定若采样得到的随机数小于 1 2 \frac{1}{2} 21,则猜测下一次采得的随机数会更大;若采样得到的随机数大于 1 2 \frac{1}{2} 21,则猜测下一次采得的随机数会更小。若猜测正确,则继续猜;若猜测错误,则采样终止。求采样次数的数学期望。

f ( x ) f(x) f(x)表示当前点为 x x x时,继续猜测的次数。给出 f ( x ) f(x) f(x)的表达式如下:
f ( x ) = { ∫ x 1 f ( t ) d t + 1 0 ≤ x ≤ 1 2 ∫ 0 x f ( t ) d t + 1 1 2 < x ≤ 1 f(x)=\begin{cases} \int_x^1{f(t)dt}+1 &0\leq x\leq\frac{1}{2} \\ \int_0^x{f(t)dt}+1 & \frac{1}{2}<x\leq 1 \end{cases} f(x)={x1f(t)dt+10xf(t)dt+10x2121<x1
值得说明的是, x = 1 2 x=\frac{1}{2} x=21的情况对于两个公式都成立。这个式子是怎么得出来的呢?现在的点是 x x x,我们先要按上述规则进行一次猜测(这是+1的含义)。如果猜错了,我们就失去了继续猜测的机会。如果猜对了,那么我们可以继续猜测。假设下一个点是 t t t,这样的概率为 d t dt dt,继续猜测的次数为 f ( t ) f(t) f(t)。这样做一个积分(可以理解为加权平均)就能得到 f ( x ) f(x) f(x)的表达式了。

假设 E E E为采样次数的数学期望,那么 E = ∫ 0 1 f ( t ) d t + 1 E=\int_0^1{f(t)dt}+1 E=01f(t)dt+1

这个式子的含义是,先随机出现一个点(这是+1的含义),再按照这个点的值进行加权平均(也就是积分的含义)。

E E E就是在连续情形下,王荣的摸牌数。

接下来,我们开始解这个函数。

首先,发现一个很简单的事实, f ( 0 ) = f ( 1 ) = E f(0)=f(1)=E f(0)=f(1)=E

显然,这个函数关于 x = 1 2 x=\frac{1}{2} x=21是对称的。那么,我们来求一下 f ( 1 2 ) f(\frac{1}{2}) f(21)的值。

f ( 1 2 ) = ∫ 1 2 1 f ( t ) d t + 1 = ∫ 0 1 2 f ( t ) d t + 1 f(\frac{1}{2})=\int_\frac{1}{2}^1{f(t)dt}+1=\int_0^\frac{1}{2}{f(t)dt}+1 f(21)=211f(t)dt+1=021f(t)dt+1

2 f ( 1 2 ) = ∫ 0 1 f ( t ) d t + 2 = E + 2 2f(\frac{1}{2})=\int_0^1{f(t)dt}+2=E+2 2f(21)=01f(t)dt+2=E+2

f ( 1 2 ) = 1 2 E + 1 2 f(\frac{1}{2})=\frac{1}{2}E+\frac{1}{2} f(21)=21E+21

0 ≤ x ≤ 1 2 0\leq x\leq \frac{1}{2} 0x21时,我们对 f ( x ) = ∫ x 1 f ( t ) d t + 1 f(x)=\int_x^1{f(t)dt}+1 f(x)=x1f(t)dt+1两边求导,得

f ′ = − f f'=-f f=f

这是一个比较简单的常微分方程,接下来需要一点点常微分方程的知识。

d f d x = − f \frac{df}{dx}=-f dxdf=f

d f f = − d x \frac{df}{f}=-dx fdf=dx

d l n f = − d x dlnf=-dx dlnf=dx

l n f = − x + C 1 lnf=-x+C_1 lnf=x+C1

f = e − x + C 1 = C e − x f=e^{-x+C_1}=Ce^{-x} f=ex+C1=Cex

于是我们解得 f = C e − x f=Ce^{-x} f=Cex

代入 x = 0 x=0 x=0 x = 1 2 x=\frac{1}{2} x=21
{ C e 0 = E C e − 1 2 = 1 2 E + 1 2 \begin{cases} Ce^0=E \\ Ce^{-\frac{1}{2}}=\frac{1}{2}E+\frac{1}{2} \end{cases} {Ce0=ECe21=21E+21

解得 C = E = 1 2 e − 1 2 − 1 C=E=\frac{1}{2e^{-\frac{1}{2}}-1} C=E=2e2111

于是得到,当 0 ≤ x ≤ 1 2 0\leq x\leq \frac{1}{2} 0x21时, f ( x ) = e − x 2 e − 1 2 − 1 f(x)=\frac{e^{-x}}{2e^{-\frac{1}{2}}-1} f(x)=2e211ex

由于 f ( x ) f(x) f(x)关于 x = 1 2 x=\frac{1}{2} x=21对称,可对称地写出 1 2 < x ≤ 1 \frac{1}{2}<x\leq 1 21<x1的情况。于是我们可以得到 f ( x ) f(x) f(x)的表达式。

f ( x ) = { e − x 2 e − 1 2 − 1 0 ≤ x ≤ 1 2 e x − 1 2 e − 1 2 − 1 1 2 < x ≤ 1 f(x)=\begin{cases} \frac{e^{-x}}{2e^{-\frac{1}{2}}-1} &0\leq x\leq\frac{1}{2} \\ \frac{e^{x-1}}{2e^{-\frac{1}{2}}-1} & \frac{1}{2}<x\leq 1 \end{cases} f(x)= 2e211ex2e211ex10x2121<x1

E = 1 2 e − 1 2 − 1 ≈ 4.69 E=\frac{1}{2e^{-\frac{1}{2}}-1}\approx4.69 E=2e21114.69即为我们所求的答案。

可以发现,连续情形就是离散情形在 n → ∞ n\to\infty n时的情况。而指数函数在离散情形下对应的其实就是等比数列。

总结

本文先将问题作为离散情形进行处理,将问题中的n=13推广到了n为任意奇数的情况(偶数情形略有不同,也可以做,但是没有什么意义,笔者就没有单独列出了)。并且将问题推广到了 n n n + ∞ +\infty +的情形,即连续情形。从而彻底解出了王荣吉占背后的数学模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/141498.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Node.js 框架 star 星数量排名——NestJs跃居第二

文章目录 什么是NodeJs?什么是NodeJs框架?图表数据框架排名 什么是NodeJs? Node.js是一个基于Chrome V8引擎的JavaScript运行环境&#xff0c;它使得我们可以在服务器端使用JavaScript开发高效、可扩展的应用程序。作为一个快速、轻量级的平台&#xff0c;Node.js在Web开发领…

贪吃蛇和俄罗斯方块

贪吃蛇 一、创建新项目 创建一个新的项目&#xff0c;并命名。 创建一个名为images的文件夹用来存放游戏相关图片。 然后再在项目的src文件下创建一个com.xxx.view的包用来存放所有的图形界面类&#xff0c; 创建一个com.xxx.controller的包用来存放启动的入口类(控制类) …

Clickhouse学习笔记(14)—— Clickhouse监控

ClickHouse 运行时会将一些个自身的运行状态记录到众多系统表中&#xff0c;如下所示&#xff1a; 为了直观方便地监控ck的运行情况&#xff0c;使用Prometheus Grafana 的组合来进行监控 Prometheus 负责收集各类系统的运行指标&#xff1b;Grafana 负责可视化 Prometheus&a…

ASD光谱仪使用

ASD光谱仪使用 光谱仪机器和电脑用来实时查看光谱曲线&#xff0c;以及控制光谱仪采集的时间、条数等各项参数。 在采集时&#xff0c;需要面向太阳&#xff0c;将待测的对象完全暴露于阳光下&#xff08;下图站位是错误的挡住光线了&#xff09;。探头放置于对象正上方50cm处…

Android launchWhenXXX 和 repeatOnLifecycle

文章目录 Android launchWhenXXX 和 repeatOnLifecyclelifecycleScope和viewModelScopelaunchWhenXXXrepeatOnLifecycleflowWithLifecycle总结 Android launchWhenXXX 和 repeatOnLifecycle lifecycleScope和viewModelScope LiveData优点&#xff1a; 避免内存泄露风险&…

小程序中如何设置多门店/多人/多商品价格库存等复杂场景设置

有些商家希望打造小程序平台&#xff0c;在这个平台上有多个商家入驻&#xff0c;他们分别售卖自己的商品。而有些商家有多个连锁店&#xff0c;连锁店的商品都是一样的&#xff0c;但不同的连锁店有不同的库存和价格。这些业务在采云小程序中是怎么支持的呢&#xff1f;下面具…

2023数字科技生态展,移远通信解锁新成就

11月10日&#xff0c;以“数字科技&#xff0c;焕新启航”为主题的中国电信2023数字科技生态大会暨2023数字科技生态展在广州盛大启幕。作为物联网行业的龙头标杆&#xff0c;同时更与中国电信连续多年维持稳定友好的合作关系&#xff0c;移远通信受邀参加本次展会。 在本次展会…

CSRF和XSS漏洞结合实战案例

文章目录 CSRF和XSS漏洞结合实战案例实验原理实验步骤信息收集构造CSRF和XSS代码xss注入 CSRF和XSS漏洞结合实战案例 实验环境为csm 实验原理 攻击者利用JavaScript可以构造请求的功能在留言面板构造一个存储型xss注入&#xff0c;里面的内容为js请求。请求新添加用户&…

行业寒冬下,给软件测试工程师or功能测试的一些建议

​行业寒冬下&#xff0c;给软件测试工程师的一些建议 【文章末尾给大家留下了大量的福利】 国内的互联网行业发展较快&#xff0c;所以造成了技术研发类员工工作强度比较大&#xff0c;同时技术的快速更新又需要员工不断的学习新的技术。因此淘汰率也比较高&#xff0c;超过…

Oracle 11g安装教程

下载并安装Oracle数据库 首先&#xff0c;需要到Oracle官方网站下载Oracle数据库&#xff0c;在这里我们将下载Oracle 11g第2版的Microsoft Windows(x64)版本。由于安装文件过大&#xff0c;可以分两个文件下载或一次性下载&#xff0c;如下图所示 下载完成后&#xff0c;将下…

你知道调试一个 Web 的 Android 应用有多麻烦吗 AndroidStudio uniapp Capacitor

你知道调试一个 Web 的 Android 应用有多麻烦吗 AndroidStudio uniapp Capacitor 用的 uniapp 写的页面&#xff0c;全是坑&#xff0c;各种坑&#xff0c;生命周期不触发等。但由于已经做完大部分内容了&#xff0c;也不好换了。 我用的是 capacitor h5 > Android 的方式…

paypal第三方支付==沙盒,js

学习地址 https://developer.paypal.com/dashboard/ 创建沙盒已经得到商户和用户账号 得到clientid和client secret 得到买家账户和密码 查看沙盒内的所有账号&#xff0c;我这有一个卖家&#xff0c;两个买家账号 DEMO代码 GitHub - paypaldev/PayPal-Standard-Checkout-Tu…

基于51单片机的出租车计价器设计【程序+proteus仿真+参考论文+AD原理图】

一、项目功能简介 整个设计系统由STC89C52单片机DS1302时钟模块LCD1602显示模块DS18B20温度模块24C02存储模块L298电机驱动模块里按键模块蜂鸣器模块组成。 具体功能&#xff1a; 1、LCD1602显示日期时间、温度&#xff0c;计费开始显示起步价、里程价、总路程和总费用。 2、…

【无标题】通用工作站设计方案:ORI-D3R600服务器-多路PCIe3.0的双CPU通用工作站

ORI-D3R600服务器-多路PCIe3.0的双CPU通用工作站 一、机箱功能和技术指标&#xff1a; 系统 系统型号 ORI-SR630 主板支持 EEB(12*13)/CEB(12*10.5)/ATX(12*9.6)/Micro ATX 前置硬盘 最大支持8个3.5寸(兼容25寸)SATA硬盘 2*2.5(后置) 电源类型 CRPS元余电源&#xff0…

月入8.3k,新传文科生转行5G网络优化工程师,张雪峰:这专业,报考就打晕…

新闻传播专业的就业是什么样子的&#xff1f; 考研名师张雪峰说&#xff1a;如果我是家长的话&#xff0c;孩子非要报新闻学&#xff0c;我一定会干一个事&#xff0c;就是把他打晕&#xff0c;然后给他报个别的。 新闻传播专业似乎已经成了一个备受争议的话题&#xff0c;就业…

优秀智慧园区案例 - 珠海华发智慧园区,万字长文解析先进智慧园区建设方案经验

一、项目背景 珠海华发产业园运营管理有限公司&#xff08;简称“产业园公司”&#xff09;是2016年起连续五年跻身“中国企业500强”、国务院国企改革“双百企业”的珠海华发集团旗下的实体产业发展载体运营平台&#xff0c;依托“四园一基地”&#xff1a;中以国际产业园、信…

Spring中Bean的作用域

2023.11.8 默认情况下&#xff0c;Spring的IoC容器创建的Bean对象是单例的。下面测试一下&#xff1a; 创建一个bean类&#xff1a; package spring6.beans;public class SpringBean { }配置一下xml文件&#xff1a; <?xml version"1.0" encoding"UTF-8&…

软件测试每一个阶段需要掌握的基础知识

以下为大家介绍在每一个阶段需要掌握的基础知识以及对应的实践文档 1 测试方法与理论 名称相关知识点1.1 软件开发生命周期SCRUM/XP、持续集成/持续交付/DevOps1.2 测试流程体系传统测试流程、测试左移、测试右移1.3 测试技术体系分层测试体系、单元测试、UI 测试、接口测试、…

jetsonTX2 nx配置tensorRT加速yolov5推理

环境说明 Ubuntu 18conda环境python3.9cuda10.2&#xff0c;硬件平台是Jetson tx2 nx 前提你已经能运行YOLOV5代码后&#xff0c;再配置tensorRT进行加速。 目前只试了图片检测和C打开USB摄像头进行视频检测&#xff0c;希望是使用python配合D435i深度相机来实现检测&#xff…

前端---CSS的样式汇总

文章目录 CSS的样式元素的属性设置字体设置文字的粗细设置文字的颜色文本对齐文本修饰文本缩进行高设置背景背景的颜色背景的图片图片的属性平铺位置大小 圆角矩形 元素的显示模式行内元素和块级元素的转化弹性布局水平方向排列方式&#xff1a;justify-content垂直方向排序方式…