jetsonTX2 nx配置tensorRT加速yolov5推理

环境说明

Ubuntu 18+conda环境python3.9+cuda10.2,硬件平台是Jetson tx2 nx
前提你已经能运行YOLOV5代码后,再配置tensorRT进行加速。
目前只试了图片检测和C++打开USB摄像头进行视频检测,希望是使用python配合D435i深度相机来实现检测,后续再更新。

一、安装TensorRT
  1. 安装git和cmake(已经安装了忽略这一步)
sudo apt-get install libpython3-dev python3-numpy
  1. 克隆源码
    连接不上就挂个梯子
git clone https://github.com/dusty-nv/jetson-inference
  1. 安装附属文件
git submodule update --init
  1. 添加jetson-inference需要的包
  • 先下载相关包:百度网盘分享 提取码:s75z
    下载后拷贝到jetson tx2中,将所有包复制到刚刚克隆的jetson-inference下的data/networks

在这里插入图片描述

  • 然后cd进入到data/networks文件夹,解压相关包
cd jetson-inference/data/networks  
for tar in *.tar.gz; do tar xvf $tar; done
  • 再编辑 jetson-inference/CMakePrebuild.sh文件,把./download-models.sh 注释掉
    在这里插入图片描述
  1. 编译
  • 在 jetson-inference文件夹里面创建build文件夹
mkdir build
  • 进入build中进行cmake
cd build
cmake ../

运行过程中弹出该页面跳过即可
在这里插入图片描述
cmake过程中报错,克隆不成功,就删除jetson-inference文件夹,再试一遍

  • cmake成功后
# 可能有点慢,耐心等待
make 

make成功后

sudo make install
  1. 测试
    安装成功后,进行测试
cd jetson-inference/build/aarch64/bin
./imagenet-console ./images/bird_0.jpg output.jpg

参考博主:https://blog.csdn.net/qq_42078934/article/details/129669965?spm=1001.2014.3001.5506

  • 如果出现在下载Googlenet.tar.gz相关,并且最终下载失败,报错,需要先中断执行;
  • 然后在networks文件夹中新建Googlenet文件夹,将networks文件夹中的bvlc_googlenet.caffemodel、googlenet.prototxt和googlenet_noprob.prototxt剪切到新建的Googlenet文件夹;
  • 最后在Googlenet文件夹新建networks文件夹,将ilsvrc12_synset_words.txt剪切到新建networks文件夹

再次进行测试:
在这里插入图片描述

二、TensorRT加速YOLOV5
  1. 安装pycuda包
    这个包是使用python编写加速的一个包,本文还只实验了C++版本的,但可以先把这个包安装上
python3 -m pip install 'pycuda<2020.1'

用这个命令直接安装的2019.1版本的,网上有些教程是下载包再进行安装,我这样发现安装的包在虚拟环境中用不了,建议直接进入到需要安装的虚拟环境中,直接用这条命令进行安装。
安装完后测试:
在这里插入图片描述

  1. 下载tensorrt的YOLOV5代码
    这里我是想把自己训练好的模型,用tensorrt做一个加速,自己训练模型的yolov5版本是6.0,所以这里也下载6.0版本的tensorrt yolov5。下载链接
    在这里插入图片描述
  2. 生成wts文件
    自己训练的模型是.pt,这里先转换成.wts文件。
  • 把刚刚下载的tensorrt yolo文件中yolov5下的gen_wts.py复制到你自己yolov5代码的文件夹下(这里应该存放了你自己训练的.pt权重文件)
    在这里插入图片描述
  • 执行gen_wts.py生成.wts文件。
python3 gen_wts.py weights/yolov5s.pt # 后面是自己的权重的名字

这里如果遇到报错,参考解决办法:解决办法

  1. 生成部署引擎
  • 先将yolov5s.wts文件(上一步生成的文件)放到tensorrtx-yolov5-v6.0/yolov5文件夹中。
  • 然后打开yololayer.h文件,修改num总数,根据你训练模型的类个数来,这里我是两类,所以改为2
    在这里插入图片描述
  • 编译相关
cd tensorrtx-yolov5-v6.0/yolov5
mkdir build
cd build
cmake ..
make
sudo ./yolov5 -s ../yolov5s.wts yolov5s.engine s 
# sudo ./yolov5 -s [.wts] [.engine] [s/m/l/x/s6/m6/l6/x6 or c/c6 gd gw]      
# s代表用的是yolov5s,是什么就改成什么

到这里便通过tensorrt生成了基于C++的engine部署引擎文件,后缀.engine

  1. 使用图片测试
    将yolov5源代码的data文件夹中的images文件夹整个复制到tensorrtx/yolov5文件夹,在build文件夹里执行下面的代码。
sudo ./yolov5 -d yolov5s.engine ../samples
#sudo ./yolov5 -d [.engine] [image folder]

执行后,结果会在build中看到。如果图形没有画框,可能是因为s模型所产生的置信度一般在0.2-0.4之间,在yolov5.cpp文件中置信度conf_thresh设置在0.5,低于0.5的检测框会被排除。

  1. 使用USB摄像头
    这里是采用的C++的版本,替换tensorrtx-yolov5-v6.0\yolov5\yolov5.cpp文件中的内容为(注意修改为自己的分类类别):
#include <iostream>
#include <chrono>
#include "cuda_utils.h"
#include "logging.h"
#include "common.hpp"
#include "utils.h"
#include "calibrator.h"
 
#define USE_FP16  // set USE_INT8 or USE_FP16 or USE_FP32
#define DEVICE 0  // GPU id
#define NMS_THRESH 0.4
#define CONF_THRESH 0.5
#define BATCH_SIZE 1
 
// stuff we know about the network and the input/output blobs
static const int INPUT_H = Yolo::INPUT_H;
static const int INPUT_W = Yolo::INPUT_W;
static const int CLASS_NUM = Yolo::CLASS_NUM;
static const int OUTPUT_SIZE = Yolo::MAX_OUTPUT_BBOX_COUNT * sizeof(Yolo::Detection) / sizeof(float) + 1;  // we assume the yololayer outputs no more than MAX_OUTPUT_BBOX_COUNT boxes that conf >= 0.1
const char* INPUT_BLOB_NAME = "data";
const char* OUTPUT_BLOB_NAME = "prob";
static Logger gLogger;
 
//修改为自己的类别
char *my_classes[]={"person", "bicycle"};
 
static int get_width(int x, float gw, int divisor = 8) {
    //return math.ceil(x / divisor) * divisor
    if (int(x * gw) % divisor == 0) {
        return int(x * gw);
    }
    return (int(x * gw / divisor) + 1) * divisor;
}
 
static int get_depth(int x, float gd) {
    if (x == 1) {
        return 1;
    }
    else {
        return round(x * gd) > 1 ? round(x * gd) : 1;
    }
}
 //#创建engine和network
ICudaEngine* build_engine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, float& gd, float& gw, std::string& wts_name) {
    INetworkDefinition* network = builder->createNetworkV2(0U);
 
    // Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME
    ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W });
    assert(data);
 
    std::map<std::string, Weights> weightMap = loadWeights(wts_name);
 
    /* ------ yolov5 backbone------ */
    auto focus0 = focus(network, weightMap, *data, 3, get_width(64, gw), 3, "model.0");
    auto conv1 = convBlock(network, weightMap, *focus0->getOutput(0), get_width(128, gw), 3, 2, 1, "model.1");
    auto bottleneck_CSP2 = C3(network, weightMap, *conv1->getOutput(0), get_width(128, gw), get_width(128, gw), get_depth(3, gd), true, 1, 0.5, "model.2");
    auto conv3 = convBlock(network, weightMap, *bottleneck_CSP2->getOutput(0), get_width(256, gw), 3, 2, 1, "model.3");
    auto bottleneck_csp4 = C3(network, weightMap, *conv3->getOutput(0), get_width(256, gw), get_width(256, gw), get_depth(9, gd), true, 1, 0.5, "model.4");
    auto conv5 = convBlock(network, weightMap, *bottleneck_csp4->getOutput(0), get_width(512, gw), 3, 2, 1, "model.5");
    auto bottleneck_csp6 = C3(network, weightMap, *conv5->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(9, gd), true, 1, 0.5, "model.6");
    auto conv7 = convBlock(network, weightMap, *bottleneck_csp6->getOutput(0), get_width(1024, gw), 3, 2, 1, "model.7");
    auto spp8 = SPP(network, weightMap, *conv7->getOutput(0), get_width(1024, gw), get_width(1024, gw), 5, 9, 13, "model.8");
 
    /* ------ yolov5 head ------ */
    auto bottleneck_csp9 = C3(network, weightMap, *spp8->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.9");
    auto conv10 = convBlock(network, weightMap, *bottleneck_csp9->getOutput(0), get_width(512, gw), 1, 1, 1, "model.10");
 
    auto upsample11 = network->addResize(*conv10->getOutput(0));
    assert(upsample11);
    upsample11->setResizeMode(ResizeMode::kNEAREST);
    upsample11->setOutputDimensions(bottleneck_csp6->getOutput(0)->getDimensions());
 
    ITensor* inputTensors12[] = { upsample11->getOutput(0), bottleneck_csp6->getOutput(0) };
    auto cat12 = network->addConcatenation(inputTensors12, 2);
    auto bottleneck_csp13 = C3(network, weightMap, *cat12->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.13");
    auto conv14 = convBlock(network, weightMap, *bottleneck_csp13->getOutput(0), get_width(256, gw), 1, 1, 1, "model.14");
 
    auto upsample15 = network->addResize(*conv14->getOutput(0));
    assert(upsample15);
    upsample15->setResizeMode(ResizeMode::kNEAREST);
    upsample15->setOutputDimensions(bottleneck_csp4->getOutput(0)->getDimensions());
 
    ITensor* inputTensors16[] = { upsample15->getOutput(0), bottleneck_csp4->getOutput(0) };
    auto cat16 = network->addConcatenation(inputTensors16, 2);
 
    auto bottleneck_csp17 = C3(network, weightMap, *cat16->getOutput(0), get_width(512, gw), get_width(256, gw), get_depth(3, gd), false, 1, 0.5, "model.17");
 
    // yolo layer 0
    IConvolutionLayer* det0 = network->addConvolutionNd(*bottleneck_csp17->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.0.weight"], weightMap["model.24.m.0.bias"]);
    auto conv18 = convBlock(network, weightMap, *bottleneck_csp17->getOutput(0), get_width(256, gw), 3, 2, 1, "model.18");
    ITensor* inputTensors19[] = { conv18->getOutput(0), conv14->getOutput(0) };
    auto cat19 = network->addConcatenation(inputTensors19, 2);
    auto bottleneck_csp20 = C3(network, weightMap, *cat19->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.20");
    //yolo layer 1
    IConvolutionLayer* det1 = network->addConvolutionNd(*bottleneck_csp20->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.1.weight"], weightMap["model.24.m.1.bias"]);
    auto conv21 = convBlock(network, weightMap, *bottleneck_csp20->getOutput(0), get_width(512, gw), 3, 2, 1, "model.21");
    ITensor* inputTensors22[] = { conv21->getOutput(0), conv10->getOutput(0) };
    auto cat22 = network->addConcatenation(inputTensors22, 2);
    auto bottleneck_csp23 = C3(network, weightMap, *cat22->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.23");
    IConvolutionLayer* det2 = network->addConvolutionNd(*bottleneck_csp23->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.2.weight"], weightMap["model.24.m.2.bias"]);
 
    auto yolo = addYoLoLayer(network, weightMap, "model.24", std::vector<IConvolutionLayer*>{det0, det1, det2});
    yolo->getOutput(0)->setName(OUTPUT_BLOB_NAME);
    network->markOutput(*yolo->getOutput(0));
 
    // Build engine
    builder->setMaxBatchSize(maxBatchSize);
    config->setMaxWorkspaceSize(16 * (1 << 20));  // 16MB
#if defined(USE_FP16)
    config->setFlag(BuilderFlag::kFP16);
#elif defined(USE_INT8)
    std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl;
    assert(builder->platformHasFastInt8());
    config->setFlag(BuilderFlag::kINT8);
    Int8EntropyCalibrator2* calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/", "int8calib.table", INPUT_BLOB_NAME);
    config->setInt8Calibrator(calibrator);
#endif
 
    std::cout << "Building engine, please wait for a while..." << std::endl;
    ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
    std::cout << "Build engine successfully!" << std::endl;
 
    // Don't need the network any more
    network->destroy();
 
    // Release host memory
    for (auto& mem : weightMap)
    {
        free((void*)(mem.second.values));
    }
 
    return engine;
}
 
ICudaEngine* build_engine_p6(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, float& gd, float& gw, std::string& wts_name) {
    INetworkDefinition* network = builder->createNetworkV2(0U);
 
    // Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME
    ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W });
    assert(data);
 
    std::map<std::string, Weights> weightMap = loadWeights(wts_name);
 
    /* ------ yolov5 backbone------ */
    auto focus0 = focus(network, weightMap, *data, 3, get_width(64, gw), 3, "model.0");
    auto conv1 = convBlock(network, weightMap, *focus0->getOutput(0), get_width(128, gw), 3, 2, 1, "model.1");
    auto c3_2 = C3(network, weightMap, *conv1->getOutput(0), get_width(128, gw), get_width(128, gw), get_depth(3, gd), true, 1, 0.5, "model.2");
    auto conv3 = convBlock(network, weightMap, *c3_2->getOutput(0), get_width(256, gw), 3, 2, 1, "model.3");
    auto c3_4 = C3(network, weightMap, *conv3->getOutput(0), get_width(256, gw), get_width(256, gw), get_depth(9, gd), true, 1, 0.5, "model.4");
    auto conv5 = convBlock(network, weightMap, *c3_4->getOutput(0), get_width(512, gw), 3, 2, 1, "model.5");
    auto c3_6 = C3(network, weightMap, *conv5->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(9, gd), true, 1, 0.5, "model.6");
    auto conv7 = convBlock(network, weightMap, *c3_6->getOutput(0), get_width(768, gw), 3, 2, 1, "model.7");
    auto c3_8 = C3(network, weightMap, *conv7->getOutput(0), get_width(768, gw), get_width(768, gw), get_depth(3, gd), true, 1, 0.5, "model.8");
    auto conv9 = convBlock(network, weightMap, *c3_8->getOutput(0), get_width(1024, gw), 3, 2, 1, "model.9");
    auto spp10 = SPP(network, weightMap, *conv9->getOutput(0), get_width(1024, gw), get_width(1024, gw), 3, 5, 7, "model.10");
    auto c3_11 = C3(network, weightMap, *spp10->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.11");
 
    /* ------ yolov5 head ------ */
    auto conv12 = convBlock(network, weightMap, *c3_11->getOutput(0), get_width(768, gw), 1, 1, 1, "model.12");
    auto upsample13 = network->addResize(*conv12->getOutput(0));
    assert(upsample13);
    upsample13->setResizeMode(ResizeMode::kNEAREST);
    upsample13->setOutputDimensions(c3_8->getOutput(0)->getDimensions());
    ITensor* inputTensors14[] = { upsample13->getOutput(0), c3_8->getOutput(0) };
    auto cat14 = network->addConcatenation(inputTensors14, 2);
    auto c3_15 = C3(network, weightMap, *cat14->getOutput(0), get_width(1536, gw), get_width(768, gw), get_depth(3, gd), false, 1, 0.5, "model.15");
 
    auto conv16 = convBlock(network, weightMap, *c3_15->getOutput(0), get_width(512, gw), 1, 1, 1, "model.16");
    auto upsample17 = network->addResize(*conv16->getOutput(0));
    assert(upsample17);
    upsample17->setResizeMode(ResizeMode::kNEAREST);
    upsample17->setOutputDimensions(c3_6->getOutput(0)->getDimensions());
    ITensor* inputTensors18[] = { upsample17->getOutput(0), c3_6->getOutput(0) };
    auto cat18 = network->addConcatenation(inputTensors18, 2);
    auto c3_19 = C3(network, weightMap, *cat18->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.19");
 
    auto conv20 = convBlock(network, weightMap, *c3_19->getOutput(0), get_width(256, gw), 1, 1, 1, "model.20");
    auto upsample21 = network->addResize(*conv20->getOutput(0));
    assert(upsample21);
    upsample21->setResizeMode(ResizeMode::kNEAREST);
    upsample21->setOutputDimensions(c3_4->getOutput(0)->getDimensions());
    ITensor* inputTensors21[] = { upsample21->getOutput(0), c3_4->getOutput(0) };
    auto cat22 = network->addConcatenation(inputTensors21, 2);
    auto c3_23 = C3(network, weightMap, *cat22->getOutput(0), get_width(512, gw), get_width(256, gw), get_depth(3, gd), false, 1, 0.5, "model.23");
 
    auto conv24 = convBlock(network, weightMap, *c3_23->getOutput(0), get_width(256, gw), 3, 2, 1, "model.24");
    ITensor* inputTensors25[] = { conv24->getOutput(0), conv20->getOutput(0) };
    auto cat25 = network->addConcatenation(inputTensors25, 2);
    auto c3_26 = C3(network, weightMap, *cat25->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.26");
 
    auto conv27 = convBlock(network, weightMap, *c3_26->getOutput(0), get_width(512, gw), 3, 2, 1, "model.27");
    ITensor* inputTensors28[] = { conv27->getOutput(0), conv16->getOutput(0) };
    auto cat28 = network->addConcatenation(inputTensors28, 2);
    auto c3_29 = C3(network, weightMap, *cat28->getOutput(0), get_width(1536, gw), get_width(768, gw), get_depth(3, gd), false, 1, 0.5, "model.29");
 
    auto conv30 = convBlock(network, weightMap, *c3_29->getOutput(0), get_width(768, gw), 3, 2, 1, "model.30");
    ITensor* inputTensors31[] = { conv30->getOutput(0), conv12->getOutput(0) };
    auto cat31 = network->addConcatenation(inputTensors31, 2);
    auto c3_32 = C3(network, weightMap, *cat31->getOutput(0), get_width(2048, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.32");
 
    /* ------ detect ------ */
    IConvolutionLayer* det0 = network->addConvolutionNd(*c3_23->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.0.weight"], weightMap["model.33.m.0.bias"]);
    IConvolutionLayer* det1 = network->addConvolutionNd(*c3_26->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.1.weight"], weightMap["model.33.m.1.bias"]);
    IConvolutionLayer* det2 = network->addConvolutionNd(*c3_29->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.2.weight"], weightMap["model.33.m.2.bias"]);
    IConvolutionLayer* det3 = network->addConvolutionNd(*c3_32->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.3.weight"], weightMap["model.33.m.3.bias"]);
 
    auto yolo = addYoLoLayer(network, weightMap, "model.33", std::vector<IConvolutionLayer*>{det0, det1, det2, det3});
    yolo->getOutput(0)->setName(OUTPUT_BLOB_NAME);
    network->markOutput(*yolo->getOutput(0));
 
    // Build engine
    builder->setMaxBatchSize(maxBatchSize);
    config->setMaxWorkspaceSize(16 * (1 << 20));  // 16MB
#if defined(USE_FP16)
    config->setFlag(BuilderFlag::kFP16);
#elif defined(USE_INT8)
    std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl;
    assert(builder->platformHasFastInt8());
    config->setFlag(BuilderFlag::kINT8);
    Int8EntropyCalibrator2* calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/", "int8calib.table", INPUT_BLOB_NAME);
    config->setInt8Calibrator(calibrator);
#endif
 
    std::cout << "Building engine, please wait for a while..." << std::endl;
    ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
    std::cout << "Build engine successfully!" << std::endl;
 
    // Don't need the network any more
    network->destroy();
 
    // Release host memory
    for (auto& mem : weightMap)
    {
        free((void*)(mem.second.values));
    }
 
    return engine;
}
 
void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream, float& gd, float& gw, std::string& wts_name) {
    // Create builder
    IBuilder* builder = createInferBuilder(gLogger);
    IBuilderConfig* config = builder->createBuilderConfig();
 
    // Create model to populate the network, then set the outputs and create an engine
    ICudaEngine* engine = build_engine(maxBatchSize, builder, config, DataType::kFLOAT, gd, gw, wts_name);
    assert(engine != nullptr);
 
    // Serialize the engine
    (*modelStream) = engine->serialize();
 
    // Close everything down
    engine->destroy();
    builder->destroy();
    config->destroy();
}
 
void doInference(IExecutionContext& context, cudaStream_t& stream, void** buffers, float* input, float* output, int batchSize) {
    // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
    CUDA_CHECK(cudaMemcpyAsync(buffers[0], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
    context.enqueue(batchSize, buffers, stream, nullptr);
    CUDA_CHECK(cudaMemcpyAsync(output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
    cudaStreamSynchronize(stream);
}
 
bool parse_args(int argc, char** argv, std::string& engine) {
    if (argc < 3) return false;
    if (std::string(argv[1]) == "-v" && argc == 3) {
        engine = std::string(argv[2]);
    }
    else {
        return false;
    }
    return true;
}
 
int main(int argc, char** argv) {
    cudaSetDevice(DEVICE);
 
    //std::string wts_name = "";
    std::string engine_name = "";
    //float gd = 0.0f, gw = 0.0f;
    //std::string img_dir;
 
    if (!parse_args(argc, argv, engine_name)) {
        std::cerr << "arguments not right!" << std::endl;
        std::cerr << "./yolov5 -v [.engine] // run inference with camera" << std::endl;
        return -1;
    }
 
    std::ifstream file(engine_name, std::ios::binary);
    if (!file.good()) {
        std::cerr << " read " << engine_name << " error! " << std::endl;
        return -1;
    }
    char* trtModelStream{ nullptr };
    size_t size = 0;
    file.seekg(0, file.end);
    size = file.tellg();
    file.seekg(0, file.beg);
    trtModelStream = new char[size];
    assert(trtModelStream);
    file.read(trtModelStream, size);
    file.close();
 
 
    // prepare input data ---------------------------
    static float data[BATCH_SIZE * 3 * INPUT_H * INPUT_W];
    //for (int i = 0; i < 3 * INPUT_H * INPUT_W; i++)
    //    data[i] = 1.0;
    static float prob[BATCH_SIZE * OUTPUT_SIZE];
    IRuntime* runtime = createInferRuntime(gLogger);
    assert(runtime != nullptr);
    ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size);
    assert(engine != nullptr);
    IExecutionContext* context = engine->createExecutionContext();
    assert(context != nullptr);
    delete[] trtModelStream;
    assert(engine->getNbBindings() == 2);
    void* buffers[2];
    // In order to bind the buffers, we need to know the names of the input and output tensors.
    // Note that indices are guaranteed to be less than IEngine::getNbBindings()
    const int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME);
    const int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME);
    assert(inputIndex == 0);
    assert(outputIndex == 1);
    // Create GPU buffers on device
    CUDA_CHECK(cudaMalloc(&buffers[inputIndex], BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float)));
    CUDA_CHECK(cudaMalloc(&buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float)));
    // Create stream
    cudaStream_t stream;
    CUDA_CHECK(cudaStreamCreate(&stream));
 
     //#读取本地视频
    //cv::VideoCapture capture("/home/nano/Videos/video.mp4");
     //#调用本地usb摄像头,我的默认参数为1,如果1报错,可修改为0.
    cv::VideoCapture capture(0);
    if (!capture.isOpened()) {
        std::cout << "Error opening video stream or file" << std::endl;
        return -1;
    }
 
    int key;
    int fcount = 0;
    while (1)
    {
        cv::Mat frame;
        capture >> frame;
        if (frame.empty())
        {
            std::cout << "Fail to read image from camera!" << std::endl;
            break;
        }
        fcount++;
        //if (fcount < BATCH_SIZE && f + 1 != (int)file_names.size()) continue;
        for (int b = 0; b < fcount; b++) {
            //cv::Mat img = cv::imread(img_dir + "/" + file_names[f - fcount + 1 + b]);
            cv::Mat img = frame;
            if (img.empty()) continue;
            cv::Mat pr_img = preprocess_img(img, INPUT_W, INPUT_H); // letterbox BGR to RGB
            int i = 0;
            for (int row = 0; row < INPUT_H; ++row) {
                uchar* uc_pixel = pr_img.data + row * pr_img.step;
                for (int col = 0; col < INPUT_W; ++col) {
                    data[b * 3 * INPUT_H * INPUT_W + i] = (float)uc_pixel[2] / 255.0;
                    data[b * 3 * INPUT_H * INPUT_W + i + INPUT_H * INPUT_W] = (float)uc_pixel[1] / 255.0;
                    data[b * 3 * INPUT_H * INPUT_W + i + 2 * INPUT_H * INPUT_W] = (float)uc_pixel[0] / 255.0;
                    uc_pixel += 3;
                    ++i;
                }
            }
        }
 
        // Run inference
        auto start = std::chrono::system_clock::now();//#获取模型推理开始时间
        doInference(*context, stream, buffers, data, prob, BATCH_SIZE);
        auto end = std::chrono::system_clock::now();//#结束时间
        //std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
        int fps = 1000.0 / std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
        std::vector<std::vector<Yolo::Detection>> batch_res(fcount);
        for (int b = 0; b < fcount; b++) {
            auto& res = batch_res[b];
            nms(res, &prob[b * OUTPUT_SIZE], CONF_THRESH, NMS_THRESH);
        }
        for (int b = 0; b < fcount; b++) {
            auto& res = batch_res[b];
            //std::cout << res.size() << std::endl;
            //cv::Mat img = cv::imread(img_dir + "/" + file_names[f - fcount + 1 + b]);
            for (size_t j = 0; j < res.size(); j++) {
                cv::Rect r = get_rect(frame, res[j].bbox);
                cv::rectangle(frame, r, cv::Scalar(0x27, 0xC1, 0x36), 2);
                std::string label = my_classes[(int)res[j].class_id];
                cv::putText(frame, label, cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2);
                std::string jetson_fps = "FPS: " + std::to_string(fps);
                cv::putText(frame, jetson_fps, cv::Point(11, 80), cv::FONT_HERSHEY_PLAIN, 3, cv::Scalar(0, 0, 255), 2, cv::LINE_AA);
            }
            //cv::imwrite("_" + file_names[f - fcount + 1 + b], img);
        }
        cv::imshow("yolov5", frame);
        key = cv::waitKey(1);
        if (key == 'q') {
            break;
        }
        fcount = 0;
    }
 
    capture.release();
    // Release stream and buffers
    cudaStreamDestroy(stream);
    CUDA_CHECK(cudaFree(buffers[inputIndex]));
    CUDA_CHECK(cudaFree(buffers[outputIndex]));
    // Destroy the engine
    context->destroy();
    engine->destroy();
    runtime->destroy();
 
    return 0;
}

修改完后执行:

cd build
make
sudo ./yolov5 -v yolov5s.engine # 后面是自己生成的部署引擎文件
基于python的有时间了再弄

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/141461.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端---CSS的样式汇总

文章目录 CSS的样式元素的属性设置字体设置文字的粗细设置文字的颜色文本对齐文本修饰文本缩进行高设置背景背景的颜色背景的图片图片的属性平铺位置大小 圆角矩形 元素的显示模式行内元素和块级元素的转化弹性布局水平方向排列方式&#xff1a;justify-content垂直方向排序方式…

中断处理机制解析

要处理中断&#xff0c;需要有一个中断处理函数。定义如下&#xff1a; irqreturn_t (*irq_handler_t)(int irq, void * dev_id);/*** enum irqreturn* IRQ_NONE interrupt was not from this device or was not handled* IRQ_HANDLED interrupt was handled by this de…

【PG】PostgreSQL 目录结构

目录 1 软件安装目录 2 数据文件目录 base/&#xff1a;存储每个数据库的基本数据文件 global/&#xff1a;包含了全局性质的系统表空间文件 pg_tblspc/&#xff1a;包含了表空间的符号链接 pg_twophase/&#xff1a;包含了两阶段提交中使用的文件 pg_stat_tmp/&#xff…

短剧软件APP开发方案

一、项目概述 短剧软件APP是一款集创作、拍摄、观看短剧于一体的移动应用。用户可以随时随地创作自己的短剧&#xff0c;也可以观看其他用户创作的短剧。本方案将详细介绍短剧软件APP的开发流程。 二、需求分析 在开发短剧软件APP之前&#xff0c;需要进行详细的需求分析。通…

【外汇天眼】连接金融创新未来:参与2023 Wiki Finance Expo悉尼站,共谋发展新趋势!

你准备好了么&#xff1f; 2023年Wiki Finance Expo将于11月16日举行&#xff01; 地点&#xff1a;澳大利亚悉尼马丁广场1号富丽敦酒店&#xff08;The Fullerton Hotel Sydney, No.1 Martin Place, Sydney NSW 2000, Australia&#xff09; 该金融博览会将会成为澳大利亚今…

【开源】基于Vue和SpringBoot的智能停车场管理系统

项目编号&#xff1a; S 005 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S005&#xff0c;文末获取源码。} 项目编号&#xff1a;S005&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容A. 车主端功能B. 停车工作人员功能C. 系…

loading动效实现

在站上闲逛发现一个非常有意思的loading效果&#xff0c;跟着大佬仿写了一下Vue版本的。 https://blog.csdn.net/tianjian4592/article/details/44538605 直接放源码 <script setup> import {ref, defineProps, watch} from "vue";const props defineProps({…

Redis 连接不上 WRONGPASS invalid username-password pair

1.我的RedisDesktopManager 可以连接 但是 Springboot远程使用Redis就是连不上 2.我的密码是 abc123.. 多了英文的 ..符号 在Springboot过不了&#xff0c;所以Redis密码尽量字母数字&#xff0c;不要其他符号

打开Outlook报错修复

打开Outlook报错修复 故障现象 打开outlook提示&#xff0c;outlook.exe --系统错误 故障截图 故障原因 原因是软连接指向错误重建即可。 解决方案 下载并运行下面批处理解决 del /F /Q "C:\Program Files\Microsoft Office\root\Office16\AppvIsvStream64.dll"…

Vue 的h()

在你的示例中&#xff0c;h(div, { id: foo }, hello) 使用的是 Vue.js 中的虚拟DOM(hyperscript)的写法&#xff0c;这种写法用于创建虚拟节点。让我来详细解释一下&#xff1a; h 是一个用于创建虚拟节点的函数&#xff0c;通常是由 Vue.js 或其他类似的库提供的。这个函数通…

原生JS实现视频截图

视频截图效果预览 利用Canvas进行截图 要用原生js实现视频截图&#xff0c;可以利用canvas的绘图功能 ctx.drawImage&#xff0c;只需要获取到视频标签&#xff0c;就可以通过drawImage把视频当前帧图像绘制在canvas画布上。 const video document.querySelector(video) con…

[Android]新建项目使用AppCompatActivity后运行闪退

报错 日志&#xff1a; Caused by: java.lang.IllegalStateException: You need to use a Theme.AppCompat theme (or descendant) with this activity. FATAL EXCEPTION: main Process: com.example.gatestdemol, PID: 26071 java.lang.RuntimeException: Unable to start a…

文心一言 VS 讯飞星火 VS chatgpt (134)-- 算法导论11.2 6题

六、用go语言&#xff0c;假设将n 个关键字存储到一个大小为 m 且通过链接法解决冲突的散列表中&#xff0c;同时已知每条链的长度&#xff0c;包括其中最长链的长度 L&#xff0c;请描述从散列表的所有关键字中均匀随机地选择某一元素并在 O(L(11/a))的期望时间内返回该关键字…

邻里注意Transformer(CVPR2023)

Neighborhood Attention Transformer 摘要1、介绍2、相关工作2.1 新的卷积基线 3、方法3.1 邻居注意力3.2 Tiled NA and NATTEN3.3 邻居注意力Transformer 4、结论 代码 摘要 我们提出邻居注意力(NA)&#xff0c;第一个有效和可伸缩的滑动窗口的视觉注意机制。 NA是一种像素级…

链表题(3)

链表题 正文开始前给大家推荐个网站&#xff0c;前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 本篇内容继续给大家带来链表的一些练习题 链表分割 知识点&#xff1a; 编程基础 链表…

北京智达鑫业信息咨询有限公司专业的信息技术服务领域资质认证解决方案供应商

北京智达鑫业信息咨询有限公司成立于2014年1月8日&#xff0c;注册资本为500万元人民币.公司主要致力于信息化项目的资质咨询、指导、和培训服务&#xff0c;以及为互联网技术领域服务的企业。主要业务有&#xff1a;&#xff08;CS&#xff09;信息系统建设和服务能力评估、&a…

vue 数字软键盘 插件 封装 可拖动

1、效果图 2、使用方式 <Keyboard v-if"show" close"show false" :inputDom"$refs.input" /> 封装的数字键盘 Keyboard.vue 组件代码 <template><divclass"keyboard"ref"keyboard":style"{ left: …

《QT从基础到进阶·二十四》按钮组QButtonGroup,单选框QRadioButton和多选框QCheckBox

1、按钮组QButtonGroup 如果有多个单选按钮&#xff0c;可以统一放进一个按钮组。 图中有三个单选按钮放进了一个QGroupBox,并且设置了水平布局&#xff0c;现在要将这三个单选按钮放进一个按钮组&#xff0c;之前的想法是先把三个按钮加入按钮组&#xff0c;再把按钮组放进QG…

图的表示与基础--Java

1.图的基础知识 该图片来自于&#xff1a; https://b23.tv/KHCF2m6 2.稀疏图与稠密图 G(V,E)&#xff1a;V顶点个数&#xff0c;E边的个数 稀疏图&#xff1a;E<<V 一般用邻接表表示(数组链表) 稠密图&#xff1a;E接近V 一般用邻接矩阵表示&#xf…

S32K3基础学习 linker链接器脚本ld文件的学习(一)

一、简介 最近学习NXP新推出的S32K3系列芯片&#xff0c;我在学习容易转牛角尖&#xff0c;非得要搞明白这个芯片的启动流程&#xff0c;所以花费了一些时间&#xff0c;进行查阅资料进行学习&#xff0c;这里做下详细的记录&#xff0c;希望有用&#xff0c;如果有错误欢迎指正…