keras转onnx,TensorFlow转tf.keras.models.load_model,onnx精度转换

参考:

https://blog.csdn.net/Deaohst/article/details/126864267

转onnx

别直接转onnx。

先转PB:

import tensorflow as tf

model_path = './models/model.h5'                    # 模型文件
model = tf.keras.models.load_model(model_path)
model.save('tfmodel', save_format='tf')


再转onnx:

 python -m tf2onnx.convert --saved-model ./tfmodel/ --output ./models/model.onnx --opset 12 --verbose

转化成功:
在这里插入图片描述

将原结果和onnx推理结果比对:
原结果:
{‘drawings’: 0.00619311910122633, ‘hentai’: 0.00011550176714081317, ‘neutral’: 0.992009162902832, ‘porn’: 0.0008918801322579384, ‘sexy’: 0.0007902580546215177}}
onnx推理代码和推理结果:

import cv2
import numpy as np
import onnxruntime

IMAGE_DIM = 299  # required/default image dimensionality


def load_single_image(image_path, image_size, verbose=True):
    try:
        if verbose:
            print(image_path, "size:", image_size)

        # Load image using OpenCV
        image = cv2.imread(image_path)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)  # Convert to RGB
        image = cv2.resize(image, (image_size, image_size))

        # Preprocess the image
        image = image.astype(np.float32) / 255.0

        return np.expand_dims(image, axis=0), image_path

    except Exception as ex:
        print("Image Load Failure: ", image_path, ex)
        return None, None


# Load ONNX model
onnx_model_path = './models/model.onnx'
ort_session = onnxruntime.InferenceSession(onnx_model_path)

# Example usage:
image_path_to_load = "images/20230903000800.jpg"
loaded_image, loaded_image_path = load_single_image(image_path_to_load, IMAGE_DIM)

if loaded_image is not None:
    # Perform inference
    input_name = ort_session.get_inputs()[0].name
    output_name = ort_session.get_outputs()[0].name
    input_data = loaded_image

    # Run the ONNX model
    result = ort_session.run([output_name], {input_name: input_data})

    print(result[0].tolist())

images/20230903000800.jpg size: 299
[[0.004163397941738367, 0.00018479839491192251, 0.9918997287750244, 0.0020591376814991236, 0.0016930525889620185]]

结果不是很吻合,但也大差不差了。

转fp16 onnx

安装:

pip install onnxmltools

执行脚本:

import onnxmltools
# 加载float16_converter转换器
from onnxmltools.utils.float16_converter import convert_float_to_float16
# 使用onnxmltools.load_model()函数来加载现有的onnx模型
# 但是请确保这个模型是一个fp32的原始模型
onnx_model = onnxmltools.load_model('./models/model.onnx')
# 使用convert_float_to_float16()函数将fp32模型转换成半精度fp16
onnx_model_fp16 = convert_float_to_float16(onnx_model)
# 使用onnx.utils.save_model()函数来保存,
onnxmltools.utils.save_model(onnx_model_fp16, './models/model_fp16.onnx')

推理结果:

images/20230903000800.jpg size: 299
[[0.004119873046875, 0.00018489360809326172, 0.99169921875, 0.002071380615234375, 0.001697540283203125]]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/138888.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

域名及网络地址

域名系统 可以通过 ping 命令查看域名对应的 IP 地址。 查看本机的默认 DNS 域名服务器地址可以使用 nslookup 命令。 IP地址和域名之间的转换 程序中有必要使用域名是很有必要的,系统随时可能会因为各种原因导致 IP 地址变更。而域名则比 IP 地址稳定得多&#…

优选算法精品解析

1.双指针(前后/左右双指针) 1.1 283.移动零 快排双指针的核心算法 左边所有数 < tmp,右边所有数 > tmp,以tmp这个数为标准 1.2 1089.复习零 如果一对双指针从左向右不行,那么就从右向左,换一个方向 1.3 202.快乐数 双指针中的快慢指针: slow1,fast2 1.4 11.最多盛水的…

thinkphp5 连接多个服务器数据库

如果你的database.php 是这样&#xff0c; 这是默认的db连接配置 如果还想连接其他服务器&#xff0c;或数据库 在config.php中追加数据库配置&#xff0c; 在使用的地方调用&#xff1a; use think\Db;public function test(){$db3Db::connect(config(db3));$result $db3…

数字货币swap交易所逻辑系统开发分析方案

随着数字货币市场的快速发展&#xff0c; Swap交易所已成为一种重要的交易方式。本文将对数字货币Swap交易所逻辑系统开发进行分析&#xff0c;并探讨其优势、开发难点和解决方案。 一、数字货币Swap交易所逻辑系统开发的优势 数字货币Swap交易所是一种点对点的交易方式&#x…

LiveMedia视频监控汇聚管理平台功能中的CS客户端

平台具备独立的CS客户端可供客户使用&#xff0c;包含实时播放、监视组轮询、云镜控制、语音对讲、录像回放、报警查询、报警联动等。 实时视频 客户端支持单画面多画面显示&#xff0c;用户可选择任意一路或多路视频观看&#xff0c;视频窗口数量 1、3、6、8、9 直至 64 个可…

B树与B+树

B树 B树&#xff0c;又称多路平衡查找树&#xff0c;B树中所有结点的孩子个数的最大值称为B树的阶&#xff0c;通常用m表示。一颗m阶B树或为空树&#xff0c;或为满足如下特征的m叉树。 树中每个结点至多有m棵子树&#xff0c;即至多含有m-1个关键字若根结点不是终端结点&…

Selenium+JQuery定位方法及应用

SeleniumJQuery定位方法及应用 1 JQuery定位说明1.1 JQuery定位方法1.2 JQuery最常用的三个操作1.3 JQuery一个示例1.3.1 用户名输入框1.3.2 密码输入框1.3.3 登陆按钮1.3.4 完整代码 2 JQuery选择器2.1 常用选择器列表2.2 思考 1、关于Selenium提供了很多元素定位方法&#xf…

阿里云添加端口

目录 阿里云添加端口的方法与步骤详解 一、登录阿里云控制台 二、创建安全组 三、添加入站规则 四、添加出站规则 五、完成添加端口操作 也可 1&#xff1a;搜索轻量级服务器 2&#xff1a;点击服务器 3&#xff1a;点击添加规则 4&#xff1a;保存即可 总结 阿里云…

谈谈steam游戏搬砖的收益与风险,以及注意事项

11月CSGO市场行情分析&#xff0c;是否到了该抄底的时候了&#xff1f; 今天&#xff0c;要跟大家分享的Steam平台——全球最大的游戏平台&#xff0c;现在给大家介绍下steam搬砖项目&#xff0c;这个项目既小众又稳定。 先了解一下 steam这个平台是做什么的&#xff0c;steam…

wsl 报错:“参考的对象类型不支持尝试的操作。 Error code: Wsl/Service/0x8007273d“(win10可用)

参考文章&#xff1a;简书-Happyjava&#xff08;作者&#xff09;-wsl2出现参考的对象类型不支持尝试的操作的解决方法&#xff08;win11 永久解决&#xff09; c盘中User的用户名文件夹下的下述路径&#xff0c;创建下述文件夹&#xff0c;内容为&#xff1a;netsh winsock r…

黑客技术(网络安全)—高效自学

前言 前几天发布了一篇 网络安全&#xff08;黑客&#xff09;自学 没想到收到了许多人的私信想要学习网安黑客技术&#xff01;却不知道从哪里开始学起&#xff01;怎么学 今天给大家分享一下&#xff0c;很多人上来就说想学习黑客&#xff0c;但是连方向都没搞清楚就开始学习…

【广州华锐互动】楼宇自动化VR教学课件打造便捷、高效、低成本的教学体验

随着科技的快速发展&#xff0c;智能楼宇已成为现代建筑行业的趋势。为了更好地推广和应用智能楼宇技术&#xff0c;楼宇自动化VR教学课件应运而生。该系统利用3D虚拟仿真技术&#xff0c;为学生和教师提供了一个便捷、高效、低成本的教学平台&#xff0c;让学生可以更好地掌握…

敏感数据是什么?包含哪些?如何保障安全?

最近看到不少小伙伴在问&#xff0c;敏感数据是什么&#xff1f;包含哪些&#xff1f;如何保障安全&#xff1f;这里我们小编就给大家一一解答一下&#xff0c;仅供参考哦&#xff01; 敏感数据是什么&#xff1f; 敏感数据&#xff0c;是指泄漏后可能会给社会或个人带来严重危…

OpenWRT搭建个人web站点并结合内网穿透实现公网远程访问

文章目录 前言1. 检查uhttpd安装2. 部署web站点3. 安装cpolar内网穿透4. 配置远程访问地址5. 配置固定远程地址 前言 uhttpd 是 OpenWrt/LuCI 开发者从零开始编写的 Web 服务器&#xff0c;目的是成为优秀稳定的、适合嵌入式设备的轻量级任务的 HTTP 服务器&#xff0c;并且和…

Ubuntu环境下为串口设置别名

本文介绍Ubuntu环境下为串口设置别名。 Ubuntu环境下&#xff0c;有时候开发调试会使用到USB转串口&#xff0c;本文介绍在不同使用场景下为串口设置别名的方法。主要分为绑定设备ID和绑定USB端口号。 1.绑定设备ID 绑定设备ID适用于USB转串口的设备ID唯一的情况&#xff0c…

Vatee万腾科技决策力的引领创新:Vatee数字化视野的崭新天地

在数字时代的激烈竞争中&#xff0c;Vatee万腾以其科技决策力的引领&#xff0c;开创了数字化视野的崭新天地。这并不仅仅是一场技术的飞跃&#xff0c;更是一次对未来的深刻洞察和引领创新的勇敢实践。 Vatee万腾的科技决策力不仅仅停留在数据分析和算法的运用&#xff0c;更是…

RK3568驱动指南|第七期-设备树-第65章 设备树下platform_device和platform_driver匹配实验

瑞芯微RK3568芯片是一款定位中高端的通用型SOC&#xff0c;采用22nm制程工艺&#xff0c;搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码&#xff0c;支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU&#xff0c;可用于轻量级人工…

【Seata源码学习 】 扫描@GlobalTransaction注解 篇一

1. SeataAutoConfiguration 自动配置类的加载 基于SpringBoot的starter机制&#xff0c;在应用上下文启动时&#xff0c;会加载SeataAutoConfiguration自动配置类 # Auto Configure org.springframework.boot.autoconfigure.EnableAutoConfigurationio.seata.spring.boot.aut…

概率论和数理统计(三)数理统计基本概念

前言 “概率论”是给定一个随机变量X的分布F(x),然后求某事件A概率 P ( x ∈ A ) P(x \in A) P(x∈A)或者随机变量X的数字特征.“统计”是已知一组样本数据 { x 1 , x 2 , . . . x n } \{x_1,x_2,...x_n\} {x1​,x2​,...xn​},去求分布F(x) 统计的基本概念 在统计中&#x…

Wpf 使用 Prism 实战开发Day05

首页设计 1.效果图 一.代码现实 根据页面布局&#xff0c;可以将页面设计成3行&#xff0c;每行中分多少列&#xff0c;看需求而定根据页面内容&#xff0c;设计Model 实体类&#xff0c;以及View Model 1.Index.xaml 页面布局设计 RowDefinition 分行&#xff08;Row&#xf…