【Java】定时任务 - Timer/TimerTask 源码原理解析

一、背景及使用

日常实现各种服务端系统时,我们一定会有一些定时任务的需求。比如会议提前半小时自动提醒,异步任务定时/周期执行等。那么如何去实现这样的一个定时任务系统呢? Java JDK提供的Timer类就是一个很好的工具,通过简单的API调用,我们就可以实现定时任务。

现在就来看一下java.util.Timer是如何实现这样的定时功能的。

首先,我们来看一下一个使用demo

Timer timer = new Timer(); 
TimerTask task = new TimerTask() { 
    public void run() { 
        System.out.println("executing now!"); 
    } 
};

// 延迟 1s 打印一次 
timer.schedule(task, 1000) 
// 延迟 1s 固定时延每隔 1s 周期打印一次
timer.schedule(task, 1000, 1000); 
// 延迟 1s 固定速率每隔 1s 周期打印一次
timer.scheduleAtFixRate(task, 1000, 1000)

基本的使用方法:

  1. 创建一个Timer对象

  2. 创建一个TimerTask对象,在这里实现run方法

  3. 将TimerTask对象作为参数,传入到Timer对象的scheule方法中,进行调度执行。

加入任务的API如下:

  • 一次性任务的API

   // 指定时延后运行
   // 默认fixed-delay模式,周期时间按上一次执行结束时间计算
   public void schedule(TimerTask task, long delay) {
        if (delay < 0)
            throw new IllegalArgumentException("Negative delay.");
        sched(task, System.currentTimeMillis()+delay, 0);
    }
    
    // 指定时间点运行
    public void schedule(TimerTask task, Date time) {
        sched(task, time.getTime(), 0);
    }
  • 周期任务的APi:

    // 指定时延后运行,之后以指定周期运行
    public void schedule(TimerTask task, long delay, long period) {
        if (delay < 0)
            throw new IllegalArgumentException("Negative delay.");
        if (period <= 0)
            throw new IllegalArgumentException("Non-positive period.");
        sched(task, System.currentTimeMillis()+delay, -period);
    }

    // 指定时间点运行,之后以指定周期运行
    public void schedule(TimerTask task, Date firstTime, long period) {
        if (period <= 0)
            throw new IllegalArgumentException("Non-positive period.");
        sched(task, firstTime.getTime(), -period);
    }

    // 指定时延后运行,之后以指定周期运行
    // 默认fixedRate模式,周期时间按任务执行开始时间计算
    public void scheduleAtFixedRate(TimerTask task, long delay, long period) {
        if (delay < 0)
            throw new IllegalArgumentException("Negative delay.");
        if (period <= 0)
            throw new IllegalArgumentException("Non-positive period.");
        sched(task, System.currentTimeMillis()+delay, period);
    }

    public void scheduleAtFixedRate(TimerTask task, Date firstTime,
                                    long period) {
        if (period <= 0)
            throw new IllegalArgumentException("Non-positive period.");
        sched(task, firstTime.getTime(), period);
    }

可以看到API方法内部都是调用sched方法,其中time参数下一次任务执行时间点,是通过计算得到。period参数为0的话则表示为一次性任务。

二、实现原理

那么我们来看一下Timer内部是如何实现调度的。

2.1、内部结构

先看一下Timer的组成部分:

public class Timer {

    // 任务队列
    private final TaskQueue queue = new TaskQueue();

    // 工作线程,循环取任务
    private final TimerThread thread = new TimerThread(queue);

    private final Object threadReaper = new Object() {
        protected void finalize() throws Throwable {
            synchronized(queue) {
                thread.newTasksMayBeScheduled = false;
                queue.notify(); // In case queue is empty.
            }
        }
    };

    // Timer的序列号,命名工作线程(静态变量,在启动多个Timer的情况可以用于区分对应的工作线程)
    private final static AtomicInteger nextSerialNumber = new AtomicInteger(0);  
    
}

Timer有3个重要的模块,分别是 TimerTask, TaskQueue, TimerThread

  • TimerTask,即待执行的任务

  • TaskQueue,任务队列,TimerTask加入后会按执行时间自动排序

  • TimerThread,工作线程,真正循环执行TimerTask的线程

那么,在加入任务之后,整个Timer是怎么样运行的呢?可以看下面的示意图:

2.2、工作线程

  • 创建任务,调用scheule方法
public void schedule(TimerTask task, Date firstTime, long period) { 
    if (period <= 0) 
        throw new IllegalArgumentException("Non-positive period."); 
    sched(task, firstTime.getTime(), -period); 
}
  • 内部调用sched方法

// sched方法的入参是task任务,执行的时间,以及执行周期
private void sched(TimerTask task, long time, long period) {
    if (time < 0)
        throw new IllegalArgumentException("Illegal execution time.");

    // 防止溢出
    if (Math.abs(period) > (Long.MAX_VALUE >> 1))
        period >>= 1;

    // 对queue加锁,避免并发入队
    synchronized(queue) {
        if (!thread.newTasksMayBeScheduled)
            throw new IllegalStateException("Timer already cancelled.");
        
        // 对task加锁,避免并发修改
        synchronized(task.lock) {
            if (task.state != TimerTask.VIRGIN)
                throw new IllegalStateException(
                    "Task already scheduled or cancelled");
            task.nextExecutionTime = time;
            task.period = period;
            task.state = TimerTask.SCHEDULED;
        }
        // 任务入队
        queue.add(task);
        /* 如果任务是队列当前第一个任务,则唤醒工作线程
           这里是因为工作线程处理完上一个任务之后,会 sleep 到下一个 task 的执行时间点。
           如果有 nextExecutionTime 更早的 task 插队到前面,则需要马上唤醒工作线程进行检查
           避免 task 延迟执行
        */
        if (queue.getMin() == task)
            queue.notify();
    }
}

流程中加了一些锁,用来避免同时加入TimerTask的并发问题。可以看到sched方法的逻辑比较简单,task赋值之后入队,队列会自动按照nextExecutionTime排序(升序,排序的实现原理后面会提到)。

  • 工作线程的mainLoop
public void run() {
    try {
        mainLoop();
    } finally {
        synchronized(queue) {
            newTasksMayBeScheduled = false;
            queue.clear();
        }
    }
}

/**
 * 工作线程主逻辑,循环执行
 */
private void mainLoop() {
    while (true) {
        try {
            TimerTask task;
            boolean taskFired; // 标记任务是否应该执行
            synchronized(queue) {
                // 如果队列为空,且newTasksMayBeScheduled为true,此时等待任务加入
                while (queue.isEmpty() && newTasksMayBeScheduled)
                    queue.wait();
                
                // 如果队列为空,且newTasksMayBeScheduled为false,说明此时线程应该退出
                if (queue.isEmpty())
                    break;

                // 队列不为空,尝试从队列中取task(目标执行时间最早的task)
                long currentTime, executionTime;
                task = queue.getMin();
                synchronized(task.lock) {
                    // 校验task状态
                    if (task.state == TimerTask.CANCELLED) {
                        queue.removeMin();
                        continue;
                    }
                    currentTime = System.currentTimeMillis();
                    executionTime = task.nextExecutionTime;
                    
                    // 当前时间 >= 目标执行时间,说明任务可执行,设置taskFired = true
                    if (taskFired = (executionTime<=currentTime)) {
                        if (task.period == 0) { // period == 0 说明是非周期任务,先从队列移除
                            queue.removeMin();
                            task.state = TimerTask.EXECUTED;
                        } else { // 周期任务,会根据period重设执行时间,再加入到队列中
                            queue.rescheduleMin(
                              task.period<0 ? currentTime   - task.period
                                            : executionTime + task.period);
                        }
                    }
                }
                if (!taskFired) // 任务为不需执行状态,则等待
                    queue.wait(executionTime - currentTime);
            }
            if (taskFired)  // 任务需要执行,则调用task的run方法执行,这里执行的其实就是调用方创建task时候run方法的逻辑
                task.run();
        } catch(InterruptedException e) {
        }
    }
}

mainLoop的源码中可以看出,基本的流程如下所示

当发现是周期任务时,会计算下一次任务执行的时间,这个时候有两种计算方式,即前面API中的

  • schedule:period为负值,下次执行时间

  • scheduleAtFixedRate:period为正值

queue.rescheduleMin( task.period<0 ? currentTime - task.period : executionTime + task.period);

2.3、优先队列

当从队列中移除任务,或者是修改任务执行时间之后,队列会自动排序。始终保持执行时间最早的任务在队首。 那么这是如何实现的呢?

看一下TaskQueue的源码就清楚了

class TaskQueue {

    private TimerTask[] queue = new TimerTask[128];

    private int size = 0;

    int size() {
        return size;
    }
    
    void add(TimerTask task) {
        if (size + 1 == queue.length)
            queue = Arrays.copyOf(queue, 2*queue.length);

        queue[++size] = task;
        fixUp(size);
    }

    TimerTask getMin() {
        return queue[1];
    }

    TimerTask get(int i) {
        return queue[i];
    }

    void removeMin() {
        queue[1] = queue[size];
        queue[size--] = null;  // Drop extra reference to prevent memory leak
        fixDown(1);
    }

    void quickRemove(int i) {
        assert i <= size;

        queue[i] = queue[size];
        queue[size--] = null;  // Drop extra ref to prevent memory leak
    }

    void rescheduleMin(long newTime) {
        queue[1].nextExecutionTime = newTime;
        fixDown(1);
    }

    boolean isEmpty() {
        return size==0;
    }

    void clear() {
        for (int i=1; i<=size; i++)
            queue[i] = null;

        size = 0;
    }

    private void fixUp(int k) {
        while (k > 1) {
            int j = k >> 1;
            if (queue[j].nextExecutionTime <= queue[k].nextExecutionTime)
                break;
            TimerTask tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
            k = j;
        }
    }

    private void fixDown(int k) {
        int j;
        while ((j = k << 1) <= size && j > 0) {
            if (j < size &&
                queue[j].nextExecutionTime > queue[j+1].nextExecutionTime)
                j++; // j indexes smallest kid
            if (queue[k].nextExecutionTime <= queue[j].nextExecutionTime)
                break;
            TimerTask tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
            k = j;
        }
    }

    void heapify() {
        for (int i = size/2; i >= 1; i--)
            fixDown(i);
    }
}

可以看到其实TaskQueue内部就是基于数组实现了一个最小堆 (balanced binary heap), 堆中元素根据 执行时间nextExecutionTime排序,执行时间最早的任务始终会排在堆顶。这样工作线程每次检查的任务就是当前最早需要执行的任务。堆的初始大小为128,有简单的倍增扩容机制。

2.4、其他方法

TimerTask 任务有四种状态:

  • VIRGIN: 任务刚刚创建,还没有schedule

  • SCHEDULED:任务已经schedule,进入到队列中

  • EXECUTED: 任务已执行/执行中

  • CANCELLED:任务已取消

Timer 还提供了cancelpurge方法

  • cancel,清除队列中所有任务,工作线程退出。

  • purge,清除队列中所有状态置为取消的任务。

2.5、常见应用实现

Java的Timer广泛被用于实现异步任务系统,在一些开源项目中也很常见, 例如消息队列RocketMQ的 延时消息/消费重试 中的异步逻辑。

public void start() {
    if (started.compareAndSet(false, true)) {
        super.load();
        // 新建了一个timer
        this.timer = new Timer("ScheduleMessageTimerThread", true);
        for (Map.Entry<Integer, Long> entry : this.delayLevelTable.entrySet()) {
            // ...
        }
        
        // 调用了Timer的scheduleAtFixedRate方法
        this.timer.scheduleAtFixedRate(new TimerTask() {

            @Override
            public void run() {
                try {
                    if (started.get()) {
                        ScheduleMessageService.this.persist();
                    }
                } catch (Throwable e) {
                    log.error("scheduleAtFixedRate flush exception", e);
                }
            }
        }, 10000, this.defaultMessageStore.getMessageStoreConfig().getFlushDelayOffsetInterval());
    }
}

上面这段代码是RocketMQ的延时消息投递任务 ScheduleMessageService 的核心逻辑,就是使用了Timer实现的异步定时任务。

三、总结

不管是实现简单的异步逻辑,还是构建复杂的任务系统,Java的Timer确实是一个方便实用,而且又稳定的工具类。从Timer的实现原理,我们也可以窥见定时系统的一个基础实现:线程循环 + 优先队列。这对于我们自己去设计相关的系统,也会有一定的启发。

设计亮点个人总结:

  1. 流程中加了一些锁,用来避免TimeTask同时加入TimerTaskQueue、对TimeTsk修改所带来的并发问题

  2. 通过newTasksMayBeScheduled 来控制工作线程对TimerTaskQueue的执行

  3. 采用小根堆算法来对TimerTaskQueue进行优先级排序

  4. 工作线程通过循环来执行TimerTaskQueue的任务,还判断并处理了Task的状态机及流转

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/137733.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++二分查找算法:132 模式

说明 本篇是视频课程的讲义&#xff0c;可以看直接查看视频。也可以下载源码&#xff0c;包括空源码。 题目 给你一个整数数组 nums &#xff0c;数组中共有 n 个整数。132 模式的子序列 由三个整数 nums[i]、nums[j] 和 nums[k] 组成&#xff0c;并同时满足&#xff1a;i &l…

基于springboot实现沁园健身房预约管理系统【项目源码】

基于springboot实现沁园健身房预约管理系统演示 B/S架构 B/S结构是目前使用最多的结构模式&#xff0c;它可以使得系统的开发更加的简单&#xff0c;好操作&#xff0c;而且还可以对其进行维护。使用该结构时只需要在计算机中安装数据库&#xff0c;和一些很常用的浏览器就可以…

【算法】繁忙的都市(Kruskal算法)

题目 城市C是一个非常繁忙的大都市&#xff0c;城市中的道路十分的拥挤&#xff0c;于是市长决定对其中的道路进行改造。 城市C的道路是这样分布的&#xff1a; 城市中有 n 个交叉路口&#xff0c;编号是 1∼n &#xff0c;有些交叉路口之间有道路相连&#xff0c;两个交叉…

配置开启Docker2375远程连接与解决Docker未授权访问漏洞

一、配置开启Docker远程连接 首先需要安装docker,参考我这篇文章&#xff1a;基于CentOS7安装配置docker与docker-compose 配置开启Docker远程连接的步骤&#xff1a; //1-编辑/usr/lib/systemd/system/docker.service 文件 vim /usr/lib/systemd/system/docker.service //2…

合并集合(并查集)

一共有 n个数&#xff0c;编号是 1∼n&#xff0c;最开始每个数各自在一个集合中。 现在要进行 m 个操作&#xff0c;操作共有两种&#xff1a; M a b&#xff0c;将编号为 a 和 b 的两个数所在的集合合并&#xff0c;如果两个数已经在同一个集合中&#xff0c;则忽略这个操作…

解析JSON字符串:属性值为null的时候不被序列化

如果希望属性值为null及不序列化&#xff0c;只序列化不为null的值。 1、测试代码 配置代码&#xff1a; mapper.setSerializationInclusion(JsonInclude.Include.NON_NULL); 或者通过注解JsonInclude(JsonInclude.Include.NON_NULL) //常见问题2&#xff1a;属性为null&a…

python异常、模块与包

1.异常 异常&#xff1a;当检测到一个错误时&#xff0c;Python解释器就无法继续执行了&#xff0c;反而出现了一些错误的提示&#xff0c;这就是所谓的“异常”&#xff0c;也就是我们常说的BUG。 1.1捕获异常 基本语法&#xff1a; try:可能发生错误代码 except:如果出现…

数据结构之栈

目录 引言 栈的概念与结构 栈的实现 定义 初始化 销毁 压栈 检测栈是否为空 出栈 获取栈顶元素 检测栈中有效元素个数 元素访问 源代码 stack.h stack.c test.c 引言 数据结构之路经过链表后&#xff0c;就来到了栈&#xff08;Stack&#xff09; 栈的概念…

sass 封装媒体查询工具

背景 以往写媒体查询可能是这样的&#xff1a; .header {display: flex;width: 100%; }media (width > 320px) and (width < 480px) {.header {height: 50px;} }media (width > 480px) and (width < 768px) {.header {height: 60px;} }media (width > 768px) …

深入理解指针(一)

目录 内存和地址 内存 如何理解编址 指针变量和地址 取地址操作符&#xff08;&&#xff09; 指针变量和解引用操作符&#xff08;*&#xff09; 指针变量 如何拆解指针类型 解引用操作符 指针变量的大小 ​编辑 指针变量类型的意义 指针的解引用 指针-整…

2023.11.13-istio之故障注入流量拆分流量镜像熔断-oss

istio之故障注入&流量拆分&流量镜像&熔断 目录 文章目录 istio之故障注入&流量拆分&流量镜像&熔断目录本节实战1、故障注入注入 HTTP 延迟故障&#x1f6a9; 实战&#xff1a;注入 HTTP 延迟故障-2023.11.12(测试成功) 注入 HTTP abort 故障&#x1f6…

【案例】超声波测距系统设计

1.1 总体设计 1.1.1 概述 学习了明德扬至简设计法和明德扬设计规范&#xff0c;本人用FPGA设计了一个测距系统。该系统采用超声波进行测量距离再在数码管上显示。在本案例的设计过程中包括了超声波的驱动、三线式数码管显示等技术。经过逐步改进、调试等一系列工作后&#xf…

【计算机网络笔记】IP编址与有类IP地址

系列文章目录 什么是计算机网络&#xff1f; 什么是网络协议&#xff1f; 计算机网络的结构 数据交换之电路交换 数据交换之报文交换和分组交换 分组交换 vs 电路交换 计算机网络性能&#xff08;1&#xff09;——速率、带宽、延迟 计算机网络性能&#xff08;2&#xff09;…

业务出海之服务器探秘

这几年随着国内互联网市场的逐渐饱和&#xff0c;越来越多的公司加入到出海的行列&#xff0c;很多领域都取得了很不错的成就。虽然出海可以获得更加广阔的市场&#xff0c;但也需要面对很多之前在国内可能没有重视的一些问题。集中在海外服务器的选择维度上就有很大的变化。例…

matlab GUI界面实现ZieglerNicholas调节PID参数

1、内容简介 略 11-可以交流、咨询、答疑 ZieglerNicholas、PID、GUI 2、内容说明 GUI界面实现ZieglerNicholas调节PID参数 通过ZieglerNicholas调节PID参数&#xff0c;设计了GUI 3、仿真分析 略 4、参考论文 略 链接&#xff1a;https://pan.baidu.com/s/1yQ1yDfk-_…

ViewPager2和TabLayout协同使用

一、ViewPager2的基本用法 使用前先添加依赖&#xff1a; implementation androidx.appcompat:appcompat:1.4.0 // AndroidX AppCompatimplementation com.google.android.material:material:1.4.0 // Material Design Components1、制作Fragment 首先制作一个Fragment的xml布…

Linux socket编程(1):套接字、字节序和地址结构体

套接字(socket)是一种使用标准Unix文件描述符与其他程序进行通信的方式&#xff0c;它在实际的应用中都十分常用。所以从这一篇文章开始&#xff0c;我将详细介绍一下Linux环境下的socket的用法。本篇文章将介绍套接字、字节序和地址结构体的相关知识。 文章目录 1 什么是套接字…

使用Python分析时序数据集中的缺失数据

大家好&#xff0c;时间序列数据几乎每秒都会从多种来源收集&#xff0c;因此经常会出现一些数据质量问题&#xff0c;其中之一是缺失数据。 在序列数据的背景下&#xff0c;缺失信息可能由多种原因引起&#xff0c;包括采集系统的错误&#xff08;例如传感器故障&#xff09;…

Day28力扣打卡

打卡记录 给小朋友们分糖果 II&#xff08;容斥原理&#xff09; 链接 大佬的题解 def c2(n: int) -> int:return n * (n - 1) // 2 if n > 1 else 0class Solution:def distributeCandies(self, n: int, limit: int) -> int:return c2(n 2) - 3 * c2(n - limit …

【Opencv】cv::dnn::NMSBoxes()函数详解

本文通过原理和示例对cv::dnn::NMSBoxes&#xff08;&#xff09;进行解读&#xff0c;帮助大家理解和使用。 原理 cv::dnn::NMSBoxes是OpenCV库中的一个函数&#xff0c;用于在目标检测中处理多个预测框。在目标检测中&#xff0c;模型可能会为同一个物体生成多个预测框&…