服务日志性能调优,由log引出一系列的事故

只有被线上服务问题毒打过的人才明白日志有多重要!

谁赞成,谁反对?如果你深有同感,那恭喜你是个社会人了:)

日志对程序的重要性不言而喻,轻巧、简单、无需费脑,程序代码中随处可见,帮助我们排查定位一个有一个问题问题。但看似不起眼的日志,却隐藏着各式各样的“坑”,如果使用不当,不仅不能帮助我们,反而会成为服务“杀手”。

本文主要介绍生产环境日志使用不当导致的“坑”及避坑指北,高并发系统下尤为明显。同时提供一套实现方案能让程序与日志“和谐共处”。

避坑指北

本章节我将介绍过往线上遇到的日志问题,并逐个剖析问题根因。

不规范的日志书写格式

// 格式1
log.debug("get user" + uid + " from DB is Empty!");

// 格式2
if (log.isdebugEnable()) {
    log.debug("get user" + uid + " from DB is Empty!");
}

// 格式3
log.debug("get user {} from DB is Empty!", uid);
————————————————

如上三种写法,我相信大家或多或少都在项目代码中看到过,那么他们之前有区别呢,会对性能造成什么影响?

如果此时关闭 DEBUG 日志级别,差异就出现了:

格式1 依然还是要执行字符串拼接,即使它不输出日志,属于浪费。

格式2 的缺点就是就在于需要加入额外的判断逻辑,增加了废代码,一点都不优雅。

所以推荐格式3,只有在执行时才会动态的拼接,关闭相应日志级别后,不会有任何性能损耗。

生产打印大量日志消耗性能

尽量多的日志,能够把用户的请求串起来,更容易断定出问题的代码位置。由于当前分布式系统,且业务庞杂,任何日志的缺失对于程序员定位问题都是极大的障碍。所以,吃过生产问题苦的程序员,在开发代码过程中,肯定是尽量多打日志。

为了以后线上出现问题能尽快定位问题并修复,程序员在编程实现阶段,就会尽量多打关键日志。那上线后是能快速定位问题了,但是紧接着又会有新的挑战:随着业务的快速发展,用户访问不断增多,系统压力越来越大,此时线上大量的 INFO 日志,尤其在高峰期,大量的日志磁盘写入,极具消耗服务性能。

那这就变成了博弈论,日志多了好排查问题,但是服务性能被“吃了”,日志少了服务稳定性没啥影响了,但是排查问题难了,程序员“苦”啊。

提问:为何 INFO 日志打多了,性能会受损(此时 CPU 使用率很高)?

根因一:同步打印日志磁盘 I/O 成为瓶颈,导致大量线程 Block

可以想象,如果日志都输出到同一个日志文件时,此时有多个线程都往文件里面写,是不是就乱了套了。那解决的办法就是加锁,保证日志文件输出不会错乱,如果是在高峰期,锁的争抢 无疑是最耗性能的。当有一个线程抢到锁后,其他的线程只能 Block 等待,严重拖垮用户线程,表现就是上游调用超时,用户感觉卡顿。

如下是线程卡在写文件时的堆栈:

Stack Trace is:
java.lang.Thread.State: BLOCKED (on object monitor)
at org.apache.logging.log4j.core.appender.OutputStreamManager.writeBytes(OutputStreamManager.java:352)
- waiting to lock <0x000000063d668298> (a org.apache.logging.log4j.core.appender.rolling.RollingFileManager)
at org.apache.logging.log4j.core.layout.TextEncoderHelper.writeEncodedText(TextEncoderHelper.java:96)
at org.apache.logging.log4j.core.layout.TextEncoderHelper.encodeText(TextEncoderHelper.java:65)
at org.apache.logging.log4j.core.layout.StringBuilderEncoder.encode(StringBuilderEncoder.java:68)
at org.apache.logging.log4j.core.layout.StringBuilderEncoder.encode(StringBuilderEncoder.java:32)
at org.apache.logging.log4j.core.layout.PatternLayout.encode(PatternLayout.java:228)
.....
那么是否线上减少 INFO 日志就没问题了呢?同样的,ERROR 日志量也不容小觑,假设线上出现大量异常数据,或者下游大量超时,瞬时会产生大量 ERROR 日志,此时还是会把磁盘 I/O 压满,导致用户线程 Block 住。

提问:假设不关心 INFO 排查问题,是不是生产只打印 ERROR 日志就没性能问题了?

根因二:高并发下日志打印异常堆栈造成线程 Block

有次线上下游出现大量超时,异常都被我们的服务捕获了,庆幸的是容灾设计时预计到会有这种问题发生,做了兜底值逻辑,本来庆幸没啥影响是,服务器开始“教做人”了。线上监控开始报警, CPU 使用率增长过快,CPU 一路直接增到 90%+ ,此时紧急扩容止损,并找一台拉下流量,拉取堆栈。

Dump 下来的线程堆栈查看后,结合火焰退分析,大部分现成都卡在如下堆栈位置:

Stack Trace is:
java.lang.Thread.State: BLOCKED (on object monitor)
at java.lang.ClassLoader.loadClass(ClassLoader.java:404)
- waiting to lock <0x000000064c514c88> (a java.lang.Object)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at org.apache.logging.log4j.core.impl.ThrowableProxyHelper.loadClass(ThrowableProxyHelper.java:205)
at org.apache.logging.log4j.core.impl.ThrowableProxyHelper.toExtendedStackTrace(ThrowableProxyHelper.java:112)
at org.apache.logging.log4j.core.impl.ThrowableProxy.(ThrowableProxy.java:112)
at org.apache.logging.log4j.core.impl.ThrowableProxy.(ThrowableProxy.java:96)
at org.apache.logging.log4j.core.impl.Log4jLogEvent.getThrownProxy(Log4jLogEvent.java:629)
...
此处堆栈较长,大部分现场全部 Block 在 java.lang.ClassLoader.loadClass,而且往下盘堆栈发现都是因为这行代码触发的

at org.apache.logging.slf4j.Log4jLogger.error(Log4jLogger.java:319)

// 对应的业务代码为
log.error("ds fetcher get error", e);
啊这。。。就很离谱,你打个日志为何会加载类呢?加载类为何会 Block 这么多线程呢?

一番查阅分析后,得出如下结论:

使用 Log4j 的 Logger.error 去打印异常堆栈的时候,为了打印出堆栈中类的位置信息,需要使用 Classloader 进行类加载;
Classloader加载是线程安全的,虽然并行加载可以提高加载不同类的效率,但是多线程加载相同的类时,还是需要互相同步等待,尤其当不同的线程打印的异常堆栈完全相同时,就会增加线程 Block 的风险,而 Classloader 去加载一个无法加载的类时,效率会急剧下降,使线程Block的情况进一步恶化;
因为反射调用效率问题,JDK 对反射调用进行了优化,动态生成 Java 类进行方法调用,替换原来的 native 调用,而生成的动态类是由 DelegatingClassLoader 进行加载的,不能被其他的 Classloader 加载,异常堆栈中有反射优化的动态类,在高并发的条件下,就非常容易产生线程 Block 的情况。
结合上文堆栈,卡在此处就很明清晰了:

大量的线程涌进,导致下游的服务超时,使得超时异常堆栈频繁打印,堆栈的每一层,需要通过反射去拿对应的类、版本、行数等信息,loadClass 是需要同步等待的,一个线程加锁,导致大部分线程 block 住等待类加载成功,影响性能。
讲道理,即使大部分线程等待一个线程 loadClass,也只是一瞬间的卡顿,为何这个报错这会一直 loadClass类呢?结合上述结论分析程序代码,得出:此处线程内的请求下游服务逻辑包含 Groovy 脚本执行逻辑,属于动态类生成,上文结论三表明,动态类在高并发情况下,无法被log4j正确反射加载到,那么堆栈反射又要用,进入了死循环,越来越多的线程只能加入等待,block 住。

1、去掉不必要的异常堆栈打印

明显知道的异常,就不要打印堆栈,省点性能吧,任何事+高并发,意义就不一样了:)

try {
    System.out.println(Integer.parseInt(number) + 100);
} catch (Exception e) {
    // 改进前
    log.error("parse int error : " + number, e);
    // 改进后
    log.error("parse int error : " + number);
}

如果Integer.parseInt发生异常,导致异常原因肯定是出入的number不合法,在这种情况下,打印异常堆栈完全没有必要,可以去掉堆栈的打印。

2、将堆栈信息转换为字符串再打印

public static String stacktraceToString(Throwable throwable) {
    StringWriter stringWriter = new StringWriter();
    throwable.printStackTrace(new PrintWriter(stringWriter));
    return stringWriter.toString();
}
log.error 得出的堆栈信息会更加完善,JDK 的版本,Class 的路径信息,jar 包中的类还会打印 jar 的名称和版本信息,这些都是去加载类反射得来的信息,极大的损耗性能。

调用 stacktraceToString 将异常堆栈转换为字符串,相对来说,确实了一些版本和 jar 的元数据信息,此时需要你自己决策取舍,到底是否有必要打印出这些信息(比如类冲突排查基于版本还是很有用的)。

3、禁用反射优化

使用 Log4j 打印堆栈信息,如果堆栈中有反射优化生成的动态代理类,这个代理类不能被其它的Classloader加载,这个时候打印堆栈,会严重影响执行效率。但是禁用反射优化也会有副作用,导致反射执行的效率降低。

4、异步打印日志

生产环境,尤其是 QPS 高的服务,一定要开启异步打印,当然开启异步打印,有一定丢失日志的可能,比如服务器强行“杀死”,这也是一个取舍的过程。

5、日志的输出格式

我们看戏日志输出格式区别

// 格式1
[%d{yyyy/MM/dd HH:mm:ss.SSS}[%X{traceId}] %t [%p] %C{1} (%F:%M:%L) %msg%n

// 格式2
[%d{yy-MM-dd.HH:mm:ss.SSS}] [%thread]  [%-5p %-22c{0} -] %m%n

官网也有明确的性能对比提示,如果使用了如下字段输出,将极大的损耗性能

 %C or $class, %F or %file, %l or %location, %L or %line, %M or %method

log4j 为了拿到函数名称和行号信息,利用了异常机制,首先抛出一个异常,之后捕获异常并打印出异常信息的堆栈内容,再从堆栈内容中解析出行号。而实现源码中增加了锁的获取及解析过程,高并发下,性能损耗可想而知。

如下是比较影响性能的参数配置,请大家酌情配置:

%C - 调用者的类名(速度慢,不推荐使用)
%F - 调用者的文件名(速度极慢,不推荐使用)
%l - 调用者的函数名、文件名、行号(极度不推荐,非常耗性能)
%L - 调用者的行号(速度极慢,不推荐使用)
%M - 调用者的函数名(速度极慢,不推荐使用)

解决方案——日志级别动态调整

项目代码需要打印大量 INFO级别日志,以支持问题定位及测试排查等。但这些大量的 INFO日志对生产环境是无效的,大量的日志会吃掉 CPU 性能,此时需要能动态调整日志级别,既满足可随时查看 INFO日志,又能满足不需要时可动态关闭,不影响服务性能需要。

方案:结合 Apollo 及 log4j2 特性,从 api层面,动态且细粒度的控制全局或单个 Class 文件内的日志级别。优势是随时生效,生产排查问题,可指定打开单个 class 文件日志级别,排查完后可随时关闭。

限于本篇篇幅,具体实现代码就不贴出了,其实实现很简单,就是巧妙的运用 Apollo 的动态通知机制去重置日志级别,如果大家感兴趣的话,可以私信或者留言我,我开一篇文章专门来详细讲解如何实现。

总结与展望

本篇带你了解了日志在日常软件服务中常见的问题,以及对应的解决方法。切记,简单的东西 + 高并发 = 不简单!要对生产保持敬畏之心!

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/133778.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python 使用tkinter复刻Windows记事本UI和菜单功能(一)

下一篇&#xff1a;Python 使用tkinter复刻Windows记事本UI和菜单&#xff08;二&#xff09;-CSDN博客 介绍&#xff1a; Windows操作系统中自带了一款记事本应用程序&#xff0c;通常用于记录文字信息&#xff0c;具有简单文本编辑功能。Windows的记事本可以新建、打开、保…

探索云世界的无限可能

文章目录 每日一句正能量前言云计算的定义和现状云计算能做什么&#xff1f;云计算市场的新特征需求方向&#xff1a;云计算的基础服务已经稳固&#xff0c;行业解决方案是新的发力点模式方向&#xff1a;分布式云模式方向&#xff1a;边缘计算是一朵新的云技术方向&#xff1a…

SQL 聚合函数

前言 SQL中的聚合函数是对一组值执行计算&#xff0c;并返回单个值的函数。 常用的聚合函数有&#xff1a; 函数作用AVG&#xff08;&#xff09;求平均值MAX&#xff08;&#xff09;求最大值MIN&#xff08;&#xff09;求最小值SUM&#xff08;&#xff09;求和COUNT&…

若依vue-初步下载使用

若依框架可以满足大部分的后台管理系统的开发,使用频率也是比较高的,所以这里讲一下如何使用若依框架 若依框架代码克隆 首先去若依官网 http://www.ruoyi.vip/ 这里演示的是若依-vue版本的使用 我们点击下载 会跳转到码云仓库 或者直接点击下面的链接去码云仓库 https://git…

第一章《补基础:不怕学不懂微积分》笔记

微积分包含众多知识点&#xff0c;例如极限概念、求导公式、乘积法则、链式法则、隐函数求导、 积分中值定理、泰勒公式等。其中&#xff0c;研究导数、微分及其应用的部分一般称为微分学&#xff0c;研究不定积分、定积分及其应用的部分一般称为积分学。微分学和积分学统称为微…

动态规划学习——多状态dp(打家劫舍问题)

一&#xff0c;打家劫舍I 题目&#xff1a; 一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&#xff0c;影响小偷偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&#xff0c;如果两间相邻的房屋在同一晚上被小偷闯入&#xff0c;系统会自…

Gold-YOLO最新YOLO系列模型

论文地址https://arxiv.org/pdf/2309.11331.pdf 代码地址https://github.com/huawei-noah/Efficient-Computing 目录 01论文介绍 01摘要 02模型训练过程 01安装环境 02修改train中参数 01修改--data-path参数 02修改--conf-file参数 03其他参数设置 03训练 04出现问…

CA 陪你看 Ignite | 聚焦 Microsoft Ignite 2023

点击蓝字 关注我们 编辑&#xff1a;Alan Wang 排版&#xff1a;Rani Sun 微软 Reactor 为帮助广开发者&#xff0c;技术爱好者&#xff0c;更好的学习 .NET Core, C#, Python&#xff0c;数据科学&#xff0c;机器学习&#xff0c;AI&#xff0c;区块链, IoT 等技术&#xff0…

超级有效的12个远程团队管理技巧

前言 随着远程办公的兴起&#xff0c;虚拟管理团队已成为新常态。尽管混合和远程工作正在成为新常态&#xff0c;但管理远程团队也面临着一系列挑战。本文我们将为您提供 12个技巧&#xff0c;帮助您成功管理远程团队并改善协作。此外&#xff0c;我们将讨论定期接触点的重要性…

Python与ArcGIS系列(一)ArcGIS中使用Python

目录 0 简述1 arcgis中的python窗口2 开始编写代码 0 简述 按照惯例&#xff0c;作为本系列专栏的第一篇&#xff0c;先简单地介绍下本系列文章的内容&#xff1a;通过python语言创建arcgis环境脚本、将脚本以工具箱形式存放在arcgis中、通过脚本自动执行地理处理、数据修复、…

VScode配置C/C++环境

文章目录 一、下载MinGW二、配置环境变量三、VScode配置四、验证 一、下载MinGW MinGW官网 划到最下面找 二、配置环境变量 解压后放到自己想放的目录下 右键 此电脑–>属性–>高级系统设置—>环境变量–> 在cmd命令行检测&#xff0c;出现如下界面&#xff1a;…

【星海随笔】SDN neutron (二) Neutron-plugin(ML2)

Neutron架构之Neutron-plugin Core-plugin(ML2)篇 Neutron-server接收两种请求&#xff1a; REST API请求&#xff1a;接收REST API请求&#xff0c;并将REST API分发到对应的Plugin&#xff08;L3RouterPlugin&#xff09;。 RPC请求&#xff1a;接收Plugin agent请求&#…

操作系统(一)基础知识及操作系统启动

文章目录 前言前置基础知识计算机组成CPU磁盘内核中断、异常、系统调用局部性原理 启动操作系统计算机加电是如何正常执行服务的&#xff1f;开机自检BIOS&#xff08;Basic Input/Output System&#xff09;BootLoader 小结 前言 本文主要涉及操作系统的简介、硬件结构、内存…

Proteus仿真--基于数码管设计的可调式电子钟

本文主要介绍基于51单片机的数码管设计的可调式电子钟实验&#xff08;完整仿真源文件及代码见文末链接&#xff09; 仿真图如下 其中数码管主要显示电子钟时间信息&#xff0c;按键用于调节时间 仿真运行视频 Proteus仿真--数码管设计的可调式电子钟&#xff08;仿真文件程…

WMS配送中心主要业务流程

业务流程图 入库 波次出库 按门店和门店所属送货路线确定出库波次 入库 出库 移库、封仓 门店欠货能要点 1. 日常补货&#xff1a;分拣仓位商品小于当前商品在该位置的补货下限的时候&#xff1b;生成对此进行补货任务&#xff1b;补货完成后确认任务&#xff0c;系统变更库存…

YOLOv8-Seg改进:分割注意力系列篇 | 高效多尺度注意力 EMA | ICASSP2023

🚀🚀🚀本文改进:EMA跨空间学习高效多尺度注意力引入到YOLOv8中进行二次创新,改进方法1)head层输出层结合;2)加入backbone; 🚀🚀🚀EMAAttention 亲测在多个数据集能够实现涨点,同样适用于小目标分割 🚀🚀🚀YOLOv8-seg创新专栏:http://t.csdnimg.cn/…

探索内存函数的奥秘【memcpy、memmove、memset、memcmp】

目录 一&#xff0c;memcpy函数 1&#xff0c;memcpy函数简介 2&#xff0c;memcpy函数的原理 3&#xff0c;memcpy函数的用法 4&#xff0c;注意事项 5&#xff0c;memcpy函数模拟实现 二&#xff0c;memmove函数 1&#xff0c;memmove函数简介 2&#xff0c;memmove函…

实验室(检验科)信息系统源码,医学检验LIS系统源码,云LIS源码

实验室&#xff08;检验科&#xff09;信息系统源码&#xff0c;LIS源码&#xff0c;基于云计算技术的LIS系统源码&#xff0c;云LIS源码 LIS系统(LaboratoryInformationSystem) 即 实验室&#xff08;检验科&#xff09;信息系统&#xff0c;它是医院信息管理的重要组成部分之…

Vue3 源码解读系列(三)——组件渲染

组件渲染 vnode 本质是用来描述 DOM 的 JavaScript 对象&#xff0c;它在 Vue 中可以描述不同类型的节点&#xff0c;比如&#xff1a;普通元素节点、组件节点等。 vnode 的优点&#xff1a; 抽象&#xff1a;引入 vnode&#xff0c;可以把渲染过程抽象化&#xff0c;从而使得组…

用 winget 在 Windows 上安装 kubectl

目录 kubectl 是什么&#xff1f; 安装 kubectl 以管理员身份打开 PowerShell 使用 winget 安装 kubectl 测试一下&#xff0c;确保安装的是最新版本 导航到你的 home 目录&#xff1a; 验证 kubectl 配置 kubectl 是什么&#xff1f; kubectl 是 Kubernetes 的命令行工…