【机器学习范式】监督学习,无监督学习,强化学习, 半监督学习,自监督学习,迁移学习,对比分析+详解与示例代码

     目录

1. 监督学习 (Supervised Learning):

2. 无监督学习 (Unsupervised Learning):

3. 强化学习 (Reinforcement Learning):

4. 半监督学习 (Semi-Supervised Learning):

5. 自监督学习 (Self-Supervised Learning):

6. 迁移学习 (Transfer Learning):

7 机器学习范式应用分析 

        机器学习(Machine Learning,ML)有不同的范式,这些范式描述了学习算法如何从数据中提取模式和知识。以下是几种常见的机器学习范式:

1. 监督学习 (Supervised Learning):

  • 定义: 监督学习是一种机器学习任务,其中算法通过学习从输入到输出的映射关系来进行训练。训练数据包含有标签的样本,即每个输入都与相应的输出相关联。
  • 例子: 分类和回归任务是监督学习的例子。例如,手写数字识别和房价预测。
  • 代码:
  • from sklearn.datasets import load_digits
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score
    
    # 加载手写数字数据集
    digits = load_digits()
    X, y = digits.data, digits.target
    
    # 划分数据集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    
    # 创建并拟合模型
    model = LogisticRegression()
    model.fit(X_train, y_train)
    
    # 预测
    predictions = model.predict(X_test)
    
    # 评估模型
    accuracy = accuracy_score(y_test, predictions)
    print(f'Accuracy: {accuracy}')
    

2. 无监督学习 (Unsupervised Learning):

  • 定义: 无监督学习涉及从未标记的数据中学习数据的结构、模式或分布。训练数据不包含目标变量。
  • 例子: 聚类和降维是无监督学习的例子。例如,K均值聚类和主成分分析(PCA)。
  • 代码:
  • from sklearn.cluster import KMeans
    from sklearn.datasets import make_blobs
    import matplotlib.pyplot as plt
    
    # 创建一个带有明显簇结构的合成数据集
    X, _ = make_blobs(n_samples=300, centers=4, cluster_std=1.0, random_state=42)
    
    # 使用K均值进行聚类
    kmeans = KMeans(n_clusters=4)
    kmeans.fit(X)
    
    # 预测每个样本的簇标签
    labels = kmeans.predict(X)
    
    # 可视化聚类结果
    plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
    plt.title('K-Means Clustering')
    plt.show()
    

3. 强化学习 (Reinforcement Learning):

  • 定义: 强化学习是一种通过观察环境、执行动作并从奖励中学习的学习方式。它旨在使智能体(agent)在环境中学会采取一系列动作,以最大化累积奖励。
  • 例子: AlphaGo 是一个著名的强化学习应用,通过与自己下围棋的对局进行训练,最终成为世界冠军。
  • 代码:
  • # 强化学习示例代码通常涉及使用专门的库(如TensorFlow、PyTorch)和环境(如OpenAI Gym)。
    # 以下是一个简化的伪代码示例:
    
    # 伪代码示例
    # 创建环境
    env = ...
    
    # 创建智能体
    agent = ...
    
    # 迭代训练
    for episode in range(num_episodes):
        state = env.reset()
        total_reward = 0
        
        # 迭代每个时间步
        while not done:
            # 智能体选择动作
            action = agent.choose_action(state)
            
            # 执行动作,获取奖励和下一个状态
            next_state, reward, done, _ = env.step(action)
            
            # 智能体学习
            agent.learn(state, action, reward, next_state)
            
            # 更新状态
            state = next_state
            total_reward += reward
    
        # 打印每个周期的总奖励
        print(f'Episode {episode + 1}, Total Reward: {total_reward}')
    

4. 半监督学习 (Semi-Supervised Learning):

  • 定义: 半监督学习是一种综合了有标签数据和未标签数据的学习方式。模型通过同时使用这两种类型的数据进行训练,以提高性能。
  • 例子: 在半监督学习中,可以使用少量带有标签的数据和大量未标签的数据进行模型训练。
  • 示例代码:
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

# 加载手写数字数据集
digits = load_digits()
X, y = digits.data, digits.target

# 划分数据集,只使用少量带有标签的样本
X_labeled, X_unlabeled, y_labeled, _ = train_test_split(X, y, test_size=0.9, random_state=42)

# 创建并拟合模型
model = RandomForestClassifier()
model.fit(X_labeled, y_labeled)

# 预测
predictions = model.predict(X_unlabeled)

# 评估模型(在半监督学习中,可能需要一些领域专家的帮助来评估性能)

# 假设我们有一些手动标记的未标记数据的真实标签
# 在实际应用中,这个步骤可能需要领域专家的帮助
true_labels_for_unlabeled = ...

# 评估模型性能(这里简单使用准确度)
accuracy = accuracy_score(true_labels_for_unlabeled, predictions)

print(f'Model Accuracy: {accuracy * 100:.2f}%')

        在这个例子中,我们假设有一些手动标记的未标记数据的真实标签 (true_labels_for_unlabeled)。在实际应用中,获取这些标签可能需要领域专家的帮助。评估模型的性能可以使用不同的指标,具体取决于问题的性质。在这里,我们简单地使用准确度作为评估指标。可以根据实际情况选择适当的评估指标。 

5. 自监督学习 (Self-Supervised Learning):

  • 定义: 自监督学习是一种无监督学习的变体,其中模型通过自动生成标签或任务来学习。这些任务通常是通过对输入数据进行某种变换或转换来生成的。
  • 例子: 图像旋转任务是自监督学习的一种示例,模型学会预测图像是否被旋转过。
  • 示例代码:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
import matplotlib.pyplot as plt

# 自定义旋转函数
class RotateImage(nn.Module):
    def __init__(self, degrees):
        super(RotateImage, self).__init__()
        self.degrees = degrees

    def forward(self, x):
        return torch.rot90(x, self.degrees, [2, 3])

# 构建自监督学习模型
class SelfSupervisedModel(nn.Module):
    def __init__(self):
        super(SelfSupervisedModel, self).__init__()
        self.rescale = nn.functional.rescale_intensity
        self.rotate = RotateImage(degrees=1)

    def forward(self, x):
        x_rotated = self.rotate(x)
        return torch.cat([x_rotated, x], dim=1)

# 超参数
batch_size = 64
learning_rate = 0.001
epochs = 5

# 加载MNIST数据集
transform = transforms.Compose([transforms.Grayscale(num_output_channels=1),
                                transforms.ToTensor()])
mnist_dataset = MNIST(root='./data', train=True, download=True, transform=transform)
dataloader = DataLoader(mnist_dataset, batch_size=batch_size, shuffle=True)

# 初始化模型、损失函数和优化器
model = SelfSupervisedModel()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# 训练模型
for epoch in range(epochs):
    for data in dataloader:
        images, _ = data

        # 梯度清零
        optimizer.zero_grad()

        # 前向传播
        outputs = model(images)

        # 计算损失
        loss = criterion(outputs, torch.zeros_like(outputs))

        # 反向传播
        loss.backward()

        # 更新权重
        optimizer.step()

    print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item()}')

# 可视化旋转后的图像
with torch.no_grad():
    sample = next(iter(dataloader))
    original_images, _ = sample
    rotated_images = model.rotate(original_images)

    plt.figure(figsize=(8, 4))
    for i in range(4):
        plt.subplot(2, 4, i + 1)
        plt.imshow(original_images[i][0], cmap='gray')
        plt.title('Original')
        plt.axis('off')

        plt.subplot(2, 4, i + 5)
        plt.imshow(rotated_images[i][0], cmap='gray')
        plt.title('Rotated')
        plt.axis('off')

    plt.show()


6. 迁移学习 (Transfer Learning):

  • 定义: 迁移学习是一种将一个领域中学到的知识应用于另一个领域的学习方式。它通过在源领域上训练的模型或知识来提高在目标领域上的性能。
  • 例子: 在自然语言处理中,使用在大型文本语料库上预训练的词嵌入模型(如Word2Vec或GloVe)来改善在特定任务上的性能。
  • 代码:使用预训练的词嵌入模型进行情感分析

    在自然语言处理中,情感分析是一项常见的任务,涉及判断文本中的情感倾向,如正面、负面或中性。为了提高情感分析任务的性能,可以使用在大型文本语料库上预训练的词嵌入模型,如Word2Vec或GloVe。

import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.vocab import GloVe
from torchtext.data import Field, BucketIterator, TabularDataset

# 定义数据处理
TEXT = Field(tokenize='spacy', include_lengths=True)
LABEL = Field(sequential=False, use_vocab=False, dtype=torch.float)

# 加载IMDb电影评论数据集(示例数据)
train_data, test_data = TabularDataset.splits(
    path='./data',
    train='train.csv',
    test='test.csv',
    format='csv',
    fields=[('text', TEXT), ('label', LABEL)]
)

# 构建词汇表,并使用预训练的GloVe词嵌入
TEXT.build_vocab(train_data, vectors=GloVe(name='6B', dim=100))
LABEL.build_vocab(train_data)

# 定义神经网络模型
class SentimentClassifier(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers, bidirectional=bidirectional, dropout=dropout, batch_first=True)
        self.fc = nn.Linear(hidden_dim * 2 if bidirectional else hidden_dim, output_dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, text, text_lengths):
        embedded = self.embedding(text)
        packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths, batch_first=True)
        packed_output, (hidden, cell) = self.lstm(packed_embedded)
        output, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_output, batch_first=True)
        hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1))
        return self.fc(hidden)

# 初始化模型和优化器
model = SentimentClassifier(len(TEXT.vocab), 100, 256, 1, 2, True, 0.5)
model.embedding.weight.data.copy_(TEXT.vocab.vectors)
optimizer = optim.Adam(model.parameters())
criterion = nn.BCEWithLogitsLoss()

# 定义数据迭代器
train_iterator, test_iterator = BucketIterator.splits(
    (train_data, test_data),
    batch_size=64,
    sort_key=lambda x: len(x.text),
    sort_within_batch=True,
    device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
)

# 训练模型
for epoch in range(5):
    for batch in train_iterator:
        text, text_lengths = batch.text
        optimizer.zero_grad()
        predictions = model(text, text_lengths).squeeze(1)
        loss = criterion(predictions, batch.label)
        loss.backward()
        optimizer.step()

# 在测试集上评估模型
correct_predictions = 0
total_samples = 0

with torch.no_grad():
    for batch in test_iterator:
        text, text_lengths = batch.text
        predictions = model(text, text_lengths).squeeze(1)
        rounded_predictions = torch.round(torch.sigmoid(predictions))
        correct_predictions += (rounded_predictions == batch.label).sum().item()
        total_samples += len(batch.label)

accuracy = correct_predictions / total_samples
print(f'Test Accuracy: {accuracy * 100:.2f}%')

        这些机器学习范式代表了不同的学习方法和应用领域。在实际应用中,选择适当的学习范式取决于任务的性质、可用的数据以及问题的复杂性。在许多情况下,研究人员和从业者会结合这些范式,以满足特定应用的需求。

7 机器学习范式应用分析

(1) 监督学习(Supervised Learning):

  • 应用: 在许多领域中广泛应用,如图像分类、语音识别、自然语言处理等。通过提供带有标签的训练数据,模型学习从输入到输出的映射关系。
  • 对比: 需要大量标记数据,对新领域的适应能力有限,对标签噪声敏感。

(2) 无监督学习(Unsupervised Learning):

  • 应用: 在聚类、降维、异常检测等任务中有应用。无需标签,模型试图从数据中学到结构、模式或分布。
  • 对比: 对于某些任务,无监督学习可能更具通用性,但结果的解释性可能较差。

(3)强化学习(Reinforcement Learning):

  • 应用: 在游戏、机器人控制、自动驾驶等领域有应用。智能体通过与环境互动,根据奖励信号学习如何执行动作以达到最大化累积奖励。
  • 对比: 需要定义奖励信号,可能需要长时间的训练,对环境的建模和实时决策要求高。

(4)半监督学习(Semi-Supervised Learning):

  • 应用: 在当标记数据稀缺时,通过同时使用标记和未标记数据来提高模型性能。在医疗图像分析、网络安全等领域有应用。
  • 对比: 比纯监督学习更灵活,但对未标记数据的使用需要谨慎,可能受到未标记数据质量的限制。

(5)自监督学习(Self-Supervised Learning):

  • 应用: 在图像、文本等领域中,通过设计任务来生成标签,然后使用这些生成的标签进行训练。在图像领域,如图像旋转任务;在文本领域,如语言模型预训练。
  • 对比: 无需人工标签,具有良好的可扩展性和泛化性,适用于大规模数据。

(6) 迁移学习(Transfer Learning):

  • 应用: 在一个领域训练的知识被应用到另一个相关领域。在自然语言处理中,使用预训练的词嵌入模型进行情感分析,或在计算机视觉中,使用在大规模图像数据上预训练的卷积神经网络进行图像分类。
  • 对比: 可以节省大量训练时间,适用于目标任务数据有限的情况,但前提是源领域和目标领域存在一定的相关性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/132539.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第十三章《搞懂算法:神经网络是怎么回事》笔记

目前神经网络技术受到追捧,一方面是由于数据传感设备、数据通信技术和数据存储技术 的成熟与完善,使得低成本采集和存储海量数据得以成为现实;另一方面则是由于计算能力的大幅提升,如图形处理器(Graphics Processing Unit,GPU)在神…

【Linux】Centos7 shell实现MySQL5.7 tar 一键安装

🦄 个人主页——🎐个人主页 🎐✨🍁 🪁🍁🪁🍁🪁🍁🪁🍁 感谢点赞和关注 ,每天进步一点点!加油!&…

upload-labs12-21关

第十二关 提示及源码 $is_upload false; $msg null; if(isset($_POST[submit])){$ext_arr array(jpg,png,gif);$file_ext substr($_FILES[upload_file][name],strrpos($_FILES[upload_file][name],".")1);if(in_array($file_ext,$ext_arr)){$temp_file $_FILES…

KEIL MDK 调试 无法 查看 外设 信息 原因及解决方法

MDK5.38版本有bug : 不能把STM32F4的官方SVD文件转换成SFR,而MDK5.38a版本没有此问题。

前端通过导入editor.md库实现markdown功能

小王学习录 今日摘录前言jquery下载editor下载editor和jquery的导入初始化editor总结 今日摘录 满招损,谦受益 前言 要想通过editor.md实现markdown的功能,需要经过如下四步: 下载editor.md到本地将本地editor导入到前端代码中编写少量代…

Leetcode—103.二叉树的锯齿形层序遍历【中等】

2023每日刷题(二十六) Leetcode—103.二叉树的锯齿形层序遍历 BFS实现代码 /*** Definition for a binary tree node.* struct TreeNode {* int val;* struct TreeNode *left;* struct TreeNode *right;* };*/ /*** Return an array of ar…

【原创课设】java+swing+mysql药店管理系统设计与实现

摘要: 药店管理系统对于药店运营具有重大的意义。首先,它可以提高药店的运营效率,减少人工操作成本,通过信息化的管理方式,可以提高药店的服务质量和管理水平,增强药店的市场竞争力。用户可以登录系统直接…

Raft分布式一致性算法

拜占庭将军 假设多位拜占庭将军中没有叛军,信使的信息可靠但有可能被暗杀的情况下,将军们如何达成是否要进攻的一致性决定?解决问题的思路是,从多位处于平等地位的将军中选举出一位大将军,所有作战指令由大将军发出。…

伪造referer [极客大挑战 2019]Http1

打开题目 没有发现什么,我们查看源代码 在这里我们发现了提示 访问一下页面得到 提示说不能来自于https://Sycsecret.buuoj.cn,我们尝试访问一下这个url 发现访问不了 我们bp抓包一下 伪造个referer头 referer:https://Sycsecret.buuoj.cn 发包过去…

经典的测试开发面试题

1、你在测试中发现了一个bug,但是开发经理认为这不是一个bug,你应该怎样解决? 首先,将问题提交到缺陷管理库进行备案。 然后,要获取判断的依据和标准: 根绝需求说明书,产品说明、设计文档等&…

邻接表储存图实现广度优先遍历(C++)

目录 基本要求: 邻接表的结构体: 图的邻接表创建: 图的广度优先遍历(BFS): 邻接表的打印输出: 完整代码: 测试数据: 结果运行: 通过给出的图的顶点和…

Jmeter之Bean shell使用详解

一、什么是Bean Shell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法; BeanShell是一种松散类型的脚本语言(这点和JS类似); BeanShell是用Java写成的,一个小型的、免费的、可以下载的、嵌入式的Java源代码解释器,具有对象脚本语言特性,非常精…

Android---内存泄漏的优化

内存泄漏是一个隐形炸弹,其本身并不会造成程序异常,但是随着量的增长会导致其他各种并发症:OOM,UI 卡顿等。 为什么要将 Activity 单独做预防? 因为 Activity 承担了与用户交互的职责,因此内部需要持有大…

JAVA基础语法编程详解

1 类型转换 描述: 设计一个方法,将一个小于2147483647的double类型变量以截断取整方式转化为int类型输入描述: 随机double类型变量输出描述: 转化后的int类型变量示例 输入:123.45 输出: 123 题解思路&…

吴恩达《机器学习》8-1->8-2:非线性假设、神经元和大脑

一、非线性假设 在之前学到的线性回归和逻辑回归中,存在一个缺点,即当特征数量很多时,计算的负荷会变得非常大。考虑一个例子,假设我们使用 𝑥₁, 𝑥₂ 的多项式进行预测,这时我们可以很好地应…

【自定义类型:结构体】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 1. 结构体类型的声明 1.1 结构体的概念 1.2 结构的声明 ​编辑 1.3 特殊的声明 1.4 结构的自引用 2. 结构体变量的创建和初始化 3. 结构成员访问操作符 4. 结构体内…

数据库01-慢查询优化

目录 MySQL优化 慢查询 如何定位慢查询? 如何分析慢查询? MySQL优化 MySQL 优化是数据库管理和应用性能调优的一个重要方面。以下是一些常规性的 MySQL 优化经验和适用场景: 索引优化: 确保表的字段上有适当的索引&#xff0…

如何选择一个可靠的爬虫代理服务商?技术人员都需要知道

我身边从事大数据相关行业的朋友最近告诉我,自己新招的小伙伴工作效率很低,很多最基础的工具都不会选择,经常因为代理IP不可靠导致工作出错。 听完这些我才意识到,在这个大数据时代,还是有很多新手在进行网络爬取任务…

threejs(11)-精通着色器编程(难点)2

一、shader着色器编写高级图案 小日本国旗 precision lowp float; varying vec2 vUv; float strength step(0.5,distance(vUv,vec2(0.5))0.25) ; gl_FragColor vec4(strength,strength,strength,strength);绘制圆 precision lowp float; varying vec2 vUv; float strength 1…

Java中Enum枚举类型在项目中应用

1、什么是枚举类型? 1、枚举的本质就是穷举法,将可能会出现的情况,都列举出来,然后在列举的情况中调用。 2、枚举与class类似,也可以定义属性,构造方法,有getter和setter方法。 3、枚举类型对…