【自定义类型:结构体】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

目录

前言

1. 结构体类型的声明

1.1 结构体的概念

1.2 结构的声明

​编辑

1.3 特殊的声明

1.4 结构的自引用

2. 结构体变量的创建和初始化

3. 结构成员访问操作符

4. 结构体内存对齐

4.1 对齐规则

4.2 为什么存在内存对齐?

4.3 修改默认对齐数

5. 结构体传参

6. 结构体实现位段

6.1 什么是位段

6.2 位段的内存分配

6.3 位段的跨平台问题

6.4 位段的应用

6.5 位段使用的注意事项

总结


前言

世上有两种耀眼的光芒,一种是正在升起的太阳,一种是正在努力学习编程的你!一个爱学编程的人。各位看官,我衷心的希望这篇博客能对你们有所帮助,同时也希望各位看官能对我的文章给与点评,希望我们能够携手共同促进进步,在编程的道路上越走越远!

像回顾上一篇博客的请点击这里数据在内存中的存储


提示:以下是本篇文章正文内容,下面案例可供参考

1. 结构体类型的声明

1.1 结构体的概念

结构是一些值的集合,这些值称为成员变量结构的每个成员可以是不同类型的变量。

1.2 结构的声明

1.3 特殊的声明

在声明结构的时候,可以不完全的声明。(匿名结构体类型

警告:

编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。

匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使用一次。

1.4 结构的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?

比如,定义一个链表的节点:

struct Node
{

 int data;
 struct Node next;
};

上述代码正确吗?如果正确,那 sizeof(struct Node) 是多少?

仔细分析,其实是不行的,因为一个结构体中再包含一个同类型的结构体变量,这样结构体变量的大小就会无穷的大,是不合理的。

正确的自引用方式:

struct Node
{
 int data;
 struct Node* next;
};

在结构体自引用使用的过程中,夹杂了typedef对匿名结构体类型重命名,也容易引入问题,看看下面的代码,可行吗?

typedef struct
{
 int data;
 Node* next;
}Node;

答案是不行的,因为Node是对前面的匿名结构体类型的重命名产生的,但是在匿名结构体内部提前使用Node类型来创建成员变量,这是不行的。

解决方案如下:定义结构体不要使用匿名结构体了

typedef struct Node
{
 int data;
 struct Node* next;
}Node;

2. 结构体变量的创建和初始化

有了结构体类型,那如何定义变量,其实很简单,结构体变量的初始化使用{}.

struct Point
{
 int x;
 int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2

//初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};
struct Stu //类型声明
{
 char name[15];//名字
 int age; //年龄
};
struct Stu s = {"zhangsan", 20};//初始化

struct Node
{
 int data;
 struct Point p;
 struct Node* next; 
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化

指示器初始化方式(C99),这种方式允许不是按照成员顺序初始化。

struct Stu
{
 char name[15];
 int age; 
};
struct Stu s = {.age=20, .name="zhangsan"};//初始化

3. 结构成员访问操作符

结构成员访问操作符有两个一个是 . ,⼀个是 -> .

形式如下:

结构体变量.成员变量名

结构体指针—>成员变量名

举例:

#include <stdio.h>
#include <string.h>
struct Stu
{
 char name[15];//名字
 int age; //年龄
};
void print_stu(struct Stu s)
{
 printf("%s %d\n", s.name, s.age);
}
void set_stu(struct Stu* ps)
{
 strcpy(ps->name, "李四");
 ps->age = 28;
}
int main()
{
 struct Stu s = { "张三", 20 };
 print_stu(s);
 set_stu(&s);
 print_stu(s);
 return 0;
}

4. 结构体内存对齐

我们已经掌握了结构体的基本使用了。

现在我们深入讨论一个问题:计算结构体的大小。

这也是一个特别热门的考点: 结构体内存对齐

4.1 对齐规则

首先得掌握结构体的对齐规则:

1. 结构体的第一个成员对齐到相对结构体变量起始位置偏移量为0的地址处

2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处

对齐数 = 编译器默认的一个对齐数 与 该成员变量大小的较小值

- VS中默认的值为8

- Linux中没有默认对齐数,对齐数就是成员自身的大小

3. 结构体总大小为最大对齐数(结构体中每个成员变量都有一个对齐数,所有对齐数中最大的)的整数倍

4. 如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

如何确定我们的理解是正确的呢?
offsetof(结构体类型,成员名); - 宏 - 用来计算结构体成员,相较于起始位置的偏移量
需要包含头文件#include <stddef.h>

4.2 为什么存在内存对齐?

大部分的参考资料都是这样说的:

1. 平台原因(移植原因):

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因:

数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。假设一个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对齐成8的倍数,那么就可以用一个内存操作来读或者写值了。否则,我们可能需要执行两次内存访问,因为对象可能被分放在两个8字节内存块中。

总体来说:结构体的内存对齐是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:

让占用空间小的成员尽量集中在一起

//例如:
struct S1
{
 char c1;
 int i;
 char c2;
};
struct S2
{
 char c1;
 char c2;
 int i;

 };

S1 和 S2 类型的成员一模一样,但是 S1 和 S2 所占空间的大小有了一写区别。

4.3 修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。

5. 结构体传参

上面的 printf1 和 printf2 函数哪个好些?

答案是:首选printf2函数。

原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。

如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。

结论:

结构体传参的时候,要传结构体的地址。

6. 结构体实现位段

结构体讲完就得讲讲结构体实现 位段 的能力。

6.1 什么是位段

位段的声明和结构是类似的,有两个不同:

1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以选择其他类型。

2. 位段的成员名后边有一个冒号和一个数字。

代码演示:

6.2 位段的内存分配

1. 位段的成员可以是 int 、unsigned int 、signed int 或者是 char 等类型

2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。

3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

我们调试看一下是不是按照上面的方式存储的?

6.3 位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。

2. 位段中最大位的数目不能确定。(比如:int类型在16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。

3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。

4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:

跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在

6.4 位段的应用

下图是网络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样网络传输的数据报大小也会较小一些,对网络的畅通是有帮助的。

6.5 位段使用的注意事项

位段的几个成员共有同一个字节,这样有些成员的起始位置并不是这个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的。

所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入放在一个变量中,然后赋值给位段的成员。


总结

好了,本篇博客到这里就结束了,如果有更好的观点,请及时留言,我会认真观看并学习。
不积硅步,无以至千里;不积小流,无以成江海。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/132512.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据库01-慢查询优化

目录 MySQL优化 慢查询 如何定位慢查询&#xff1f; 如何分析慢查询&#xff1f; MySQL优化 MySQL 优化是数据库管理和应用性能调优的一个重要方面。以下是一些常规性的 MySQL 优化经验和适用场景&#xff1a; 索引优化&#xff1a; 确保表的字段上有适当的索引&#xff0…

如何选择一个可靠的爬虫代理服务商?技术人员都需要知道

我身边从事大数据相关行业的朋友最近告诉我&#xff0c;自己新招的小伙伴工作效率很低&#xff0c;很多最基础的工具都不会选择&#xff0c;经常因为代理IP不可靠导致工作出错。 听完这些我才意识到&#xff0c;在这个大数据时代&#xff0c;还是有很多新手在进行网络爬取任务…

threejs(11)-精通着色器编程(难点)2

一、shader着色器编写高级图案 小日本国旗 precision lowp float; varying vec2 vUv; float strength step(0.5,distance(vUv,vec2(0.5))0.25) ; gl_FragColor vec4(strength,strength,strength,strength);绘制圆 precision lowp float; varying vec2 vUv; float strength 1…

Java中Enum枚举类型在项目中应用

1、什么是枚举类型&#xff1f; 1、枚举的本质就是穷举法&#xff0c;将可能会出现的情况&#xff0c;都列举出来&#xff0c;然后在列举的情况中调用。 2、枚举与class类似&#xff0c;也可以定义属性&#xff0c;构造方法&#xff0c;有getter和setter方法。 3、枚举类型对…

改进YOLOv8:结合ICCV2023|动态蛇形卷积,构建不规则目标识别网络

🔥🔥🔥 提升多尺度、不规则目标检测,创新提升 🔥🔥🔥 🔥🔥🔥 捕捉图像特征和处理复杂图像特征 🔥🔥🔥 👉👉👉: 本专栏包含大量的新设计的创新想法,包含详细的代码和说明,具备有效的创新组合,可以有效应用到改进创新当中 👉👉👉: �…

基于FPGA的PS端的Si5340的控制

1、功能 Si5340/41-D可以输出任意频率&#xff0c;当然有范围&#xff0c;100Hz1GHz。外部输入为24M或者4854M的XTAL&#xff0c;VCO在13500~14256Mhz之间&#xff0c;控制接口采用IIC或者SPI。 芯片架构图 2、IIC控制方式 3、直接上控制代码 使用米联客ZU3EG&#xff0c;将…

spider-node-初识

spider-node spider想解决的问题1&#xff1a;业务架构层面2&#xff1a;代码层面3&#xff1a;业务&#xff0c;产品&#xff0c;研发&#xff0c;测试之间4: 系统迭代成本高 spider-node 配置讲解spider-node启动 spider想解决的问题 1&#xff1a;业务架构层面 帮助研发团队…

C++学习笔记(一):安装VisualStudio和Vcpkg

VisualStudio安装 error C4996: ‘scanf’: This function or variable may be unsafe. Consider using scanf_s instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS. See online help for details. #include <stdio.h>int main() {printf("hello"…

如何使用pngPackerGUI_V2.0,将png图片打包成plist的工具

pngPackerGUI_V2.0&#xff0c;此软件是在pngpacker_V1.1软件基础之后&#xff0c;开发的界面化操作软件&#xff0c;方便不太懂命令行的小白快捷上手使用。 具体的使用步骤如下&#xff1a; 1.下载并解压缩软件&#xff0c;得到如下目录&#xff0c;双击打开 pngPackerGUI.e…

iPhone或在2024开放第三方应用商店。

iPhone或开放第三方应用商店&#xff0c;可以说这是一个老生常谈的话题。对于像是iOS这样封闭的系统来说&#xff0c;此前传出苹果可能开放侧载消息的时候&#xff0c;又有谁能信&#xff0c;谁会信&#xff1f; 如果是按照苹果自身的意愿&#xff0c;这种事情自然是不可能发生…

Windows下Python及Anaconda的安装与设置、代码执行之保姆指南

学习Python编程需要安装基本的开发环境。 &#xff08;1&#xff09;python ——编译器&#xff1b;这个是任何语言都需要的&#xff1b;必需&#xff01; &#xff08;2&#xff09;Anaconda ——主要的辅助工具&#xff0c;号称是 Python‘OS&#xff1b;必需&#xff01; …

LeetCode | 234. 回文链表

LeetCode | 234. 回文链表 O链接 这里的解法是先找到中间结点然后再将中间节点后面的节点逆序一下然后再从头开始和从中间开始挨个比较如果中间开始的指针到走最后都相等&#xff0c;就返回true&#xff0c;否则返回false 代码如下&#xff1a; struct ListNode* reverseLis…

杂记杂记杂记

目录 Mybatis分页插件原理&#xff1f; ThreadLocal? 树形表的标记字段是什么&#xff1f;如何查询MySQL树形表&#xff1f; Mybatis的ResultType和ResultMap的区别&#xff1f; #{}和${}有什么区别&#xff1f; 系统如何处理异常&#xff1f; Mybatis分页插件原理&#…

PostMan授权认证使用

Authorization 对于很多应用&#xff0c;出于安全考虑我们的接口并不希望对外公开。这个时候就需要使用授权(Authorization)机制。 授权过程验证您是否具有访问服务器所需数据的权限。 当发送请求时&#xff0c;通常必须包含参数&#xff0c;以确保请求具有访问和返回所需数据…

Linux环境搭建和基础指令(一)

&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&#x1f396;️&…

论文笔记:SimiDTR: Deep Trajectory Recovery with Enhanced Trajectory Similarity

DASFFA 2023 1 intro 1.1 背景 由于设备和环境的限制&#xff08;设备故障&#xff0c;信号缺失&#xff09;&#xff0c;许多轨迹以低采样率记录&#xff0c;或者存在缺失的位置&#xff0c;称为不完整轨迹 恢复不完整轨迹的缺失空间-时间点并降低它们的不确定性是非常重要…

Unity中【UniTask异步流程】如何进行【步骤分段】、【步骤撤销】、【步骤跳转】、【取消异步任务】

一、UniTask和Task UniTask是Unity中的Task实现&#xff0c;Task是C#中实现异步操作的一个模块(类)。UniTask与Task有着同样的使用思路&#xff08;使用习惯&#xff0c;常用API等&#xff09;&#xff0c;可以说UniTask是借鉴Task而开发出来的。 二、需求的来源 以前有一个…

Maven内网开发使用离线仓库

Maven内网开发使用离线仓库 离线或者内网环境开发与外网不通&#xff0c;中央仓库连不上&#xff0c;使用 Maven 管理项目会遇到很多问题。 比如&#xff1a;依赖包缺失&#xff0c;内网的Nexus私服的包老旧&#xff0c;很久没有维护&#xff0c;项目无法运行打包&#xff0c;…

PDF Expert for mac(专业pdf编辑器)苹果电脑

PDF Expert for Mac 是一款功能强大、界面简洁的PDF阅读、编辑和转换工具&#xff0c;为Mac用户提供了全面而便捷的PDF处理体验。无论是日常工作中的文档阅读、标注&#xff0c;还是专业需求下的编辑、转换&#xff0c;PDF Expert 都能满足您的各种需求。 首先&#xff0c;PDF…

UWB人员定位系统的原理与应用

uwb定位技术源码 uwb高精度定位系统源码 uwb人员定位系统基于什么原理&#xff1f; UWB人员定位系统基于超宽带(Ultra WideBand)技术进行位置定位。它利用超短脉冲信号&#xff0c;通过测量信号的到达时间差和信号强度等信息&#xff0c;实现对目标位置的定位。UWB技术具有高…