主成分分析法(PCA)的理解(附python代码案例)

目录

  • 一、PCA简介
  • 二、举个例子
  • 三、计算过程(公式)
    • 3.0 题干假设
    • 3.1 标准化
    • 3.2 计算协方差矩阵
    • 3.3 计算特征值和特征值向量
    • 3.3 多重共线性检验(可跳过)
    • 3.4 适合性检验(可跳过)
    • 3.5 计算主成分贡献率及累计贡献率
    • 3.6 选取和表示主成分
    • 3.7 系数的简单分析
  • 四、案例分析(python)
    • 4.1 一步一步PCA
    • 4.2 sklearn的PCA
    • 4.3 其他实现代码(长期更新)
      • 4.3.1 numpy实现和sklearn实现
  • 五、补充总结
  • 六、参考链接

最近在文献调研,发现PCA基本都有用到,回忆起了机器学习和数学建模,总之还是要好好学学捏。

一、PCA简介

定义:主成分分析(Principal Component Analysis, PCA)是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

换一种说法:PCA去除噪声和不重要的特征,将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息,而且可以提升数据处理的速度。

为什么会出现PCA呢?因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和分析问题的复杂性

核心思想降维,这个过程中可能会损失精度,但是能获取更高更关键的因素。


二、举个例子

例子1:评选三好学生,每个学生都有很多特征,比如学习成绩、社会实践、思想道德、体育成绩等。在评比中,有一些特征属于“ 无用特征 ”,比如身高、体重、头发长短等,这些特征在评比中是不会考虑的;而有一些特征属于“ 冗余特征 ”,比如各科成绩、总成绩、GPA,实际上这些有一个即可。

例子2:见下图。原本黑色坐标系中需要记录每个点的横纵坐标(xi, yi),也就是 2 个纬度的数据。

但如果转换坐标系,如绿色坐标系所示,让每个点都位于同一条轴上,这样每个点坐标为(xi’, 0),此时仅用x’坐标表示即可,即 1 个维度。


在这个过程中,原先需要保存的 2 维数据变成了 1 维数据,叫做数据降维 / 数据提炼。而PCA的任务形象理解也就是坐标系的转换

PCA其实目的就是寻找这个转换后的坐标系,使数据能尽可能分布在一个或几个坐标轴上,同时尽可能保留原先数据分布的主要信息,使原先高维度的信息,在转换后能用低维度的信息来保存。而新坐标系的坐标轴,称为主成分(Principal components, PC),这也就是PCA的名称来源。


三、计算过程(公式)

3.0 题干假设

首先假设有 n 个样本,p 个特征, x i j x_{ij} xij 表示第i个样本的第 j 个特征,这些样本构成的 n × p 特征矩阵 X 为:
X = [ x 11 x 12 ⋯ x 1 p x 21 x 22 ⋯ x 2 p ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 ⋯ x n p ] = [ x 1 , x 2 , ⋯   , x p ] X=\begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \\ \end{bmatrix} = [x_1,x_2,\cdots,x_p] X= x11x21xn1x12x22xn2x1px2pxnp =[x1,x2,,xp]

我们的目的是找到一个转换矩阵,将 p 个特征转化为 m 个特征(m < p),从而实现特征降维。即找到一组新的特征 / 变量 z 1 z_1 z1, z 2 z_2 z2, …, z m z_m zm(m ≤ p),满足以下式子:
{ z 1 = l 11 x 1 + l 12 x 2 + ⋯ + l 1 p x p z 2 = l 21 x 1 + l 22 x 2 + ⋯ + l 2 p x p ⋮ z m = l m 1 x 1 + l m 2 x 2 + ⋯ + l m p x p \begin{cases} \begin{aligned} z_1&=l_{11}x_1+l_{12}x_2+\dots+l_{1p}x_p \\ z_2&=l_{21}x_1+l_{22}x_2+\dots+l_{2p}x_p \\ \vdots \\ z_m&=l_{m1}x_1+l_{m2}x_2+\dots+l_{mp}x_p \end{aligned} \end{cases} z1z2zm=l11x1+l12x2++l1pxp=l21x1+l22x2++l2pxp=lm1x1+lm2x2++lmpxp

3.1 标准化

有的博客写的是去中心化而不是标准化,在计算过程中也仅体现出步骤的不同,实际两种方法都可以用的,大家也可以看看这篇博客看看这几种“化”的区别:数据归一化、标准化和去中心化。本篇只研究标准化,第四部分的参考链接中介绍了标准化和去中心化的步骤,写得很详细,欢迎大家学习~

标准化过程如下:

  1. 计算每个特征(共p个特征)的均值 x j ‾ \overline{x_j} xj 和标准差 S j S_j Sj,公式如下:
    x j ‾ = 1 n ∑ i = 1 n x i j \overline{x_j}=\frac{1}{n}\sum_{i=1}^nx_{ij} xj=n1i=1nxij
    S j = ∑ i = 1 n ( x i j − x j ‾ ) 2 n − 1 S_j=\sqrt{\frac{\sum_{i=1}^n(x_{ij}-\overline{x_j})^2}{n-1}} Sj=n1i=1n(xijxj)2

  2. 将每个样本的每个特征进行标准化处理,得到标准化特征矩阵 X s t a n d X_{stand} Xstand
    X i j = x i j − x j ‾ S j X_{ij}=\frac{x_{ij}-\overline{x_j}}{S_j} Xij=Sjxijxj
    X s t a n d = [ X 11 X 12 ⋯ X 1 p X 21 X 22 ⋯ X 2 p ⋮ ⋮ ⋱ ⋮ X n 1 X n 2 ⋯ X n p ] = [ X 1 , X 2 , ⋯   , X p ] X_{stand}=\begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1p} \\ X_{21} & X_{22} & \cdots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{np} \\ \end{bmatrix} = [X_1,X_2,\cdots,X_p] Xstand= X11X21Xn1X12X22Xn2X1pX2pXnp =[X1,X2,,Xp]

3.2 计算协方差矩阵

协方差矩阵是汇总了所有可能配对的变量间相关性的一个表。

协方差矩阵 R 为:
R = [ r 11 r 12 ⋯ r 1 p r 21 r 22 ⋯ r 2 p ⋮ ⋮ ⋱ ⋮ r p 1 r p 2 ⋯ r p p ] R=\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1p} \\ r_{21} & r_{22} & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \cdots & r_{pp} \\ \end{bmatrix} R= r11r21rp1r12r22rp2r1pr2prpp

r i j = 1 n − 1 ∑ k = 1 n ( X k i − X i ‾ ) ( X k j − X j ‾ ) = 1 n − 1 ∑ k = 1 n X k i X k j \begin{aligned} r_{ij}&=\frac{1}{n-1}\sum_{k=1}^n(X_{ki}-\overline{X_i})(X_{kj}-\overline{X_j})\\ &=\frac{1}{n-1}\sum_{k=1}^nX_{ki}X_{kj} \end{aligned} rij=n11k=1n(XkiXi)(XkjXj)=n11k=1nXkiXkj

3.3 计算特征值和特征值向量

计算矩阵R的特征值,并按照大小顺序排列,计算对应的特征向量,并进行标准化,使其长度为1。R是半正定矩阵,且 t r ( R ) = ∑ k = 1 p λ k = p tr(R) = \sum_{k=1}^p\lambda_k = p tr(R)=k=1pλk=p

特征值: λ 1 ≥ λ 2 ≥ ⋯ ≥ λ p ≥ 0 \lambda_1\ge\lambda_2\ge \dots \ge \lambda_p\ge0 λ1λ2λp0

特征向量: L 1 = [ l 11 , l 12 , … , l 1 p ] T … L p = [ l p 1 , l p 2 , … , l p p ] T L_1=[l_{11},l_{12},\dots ,l_{1p}]^T \dots L_p=[l_{p1},l_{p2},\dots ,l_{pp}]^T L1=[l11,l12,,l1p]TLp=[lp1,lp2,,lpp]T

3.3 多重共线性检验(可跳过)

若存在明显的多重共线性,则重新根据研究问题选取初始分析变量。

多重共线性的影响、判定及消除的方法

由于这里是【计算过程】而不是【研究过程】,此处不推翻3.0部分的假设,着重探讨PCA的计算流程即可,故3.3和3.4部分可跳过,真正的研究过程再考虑特征矩阵如何取。

3.4 适合性检验(可跳过)

一组数据是否适用于主成分分析,必须做适合性检验。可以用球形检验和KMO统计量检验。

1. 球形检验(Bartlett)
球形检验的假设:
H0:相关系数矩阵为单位阵(即变量不相关)
H1:相关系数矩阵不是单位阵(即变量间有相关关系)

2. KMO(Kaiser-Meyer-Olkin)统计量
KMO统计量比较样本相关系数与样本偏相关系数,它用于检验样本是否适于作主成分分析。KMO的值在0-1之间,该值越大,则样本数据越适合作主成分分析和因子分析。一般要求该值大于0.5,方可作主成分分析或者相关分析。Kaiser在1974年给出了经验原则:

KMO值的范围适合性情况
0.9以上适合性很好
0.8~0.9适合性良好
0.7~0.8适合性中等
0.6~0.7适合性一般
0.5~0.6适合性不好
0.5以下不能接受的

3.5 计算主成分贡献率及累计贡献率

第 i 个主成分的贡献率为:
λ i ∑ k = 1 p λ k \frac{\lambda_i}{\sum_{k=1}^p\lambda_k} k=1pλkλi

前 i 个主成分的累计贡献率为:
∑ j = 1 i λ j ∑ k = 1 p λ k \frac{\sum_{j=1}^i\lambda_j}{\sum_{k=1}^p\lambda_k} k=1pλkj=1iλj

3.6 选取和表示主成分

一般取累计贡献率超过80%的特征值所对应的第一、第二、…、第m(m ≤ p)个主成分。Fi表示第i个主成分:
F i = l i 1 X 1 + l i 2 X 2 + ⋯ + l i p X p , ( i = 1 , 2 , … , p ) F_i=l_{i1}X_1+l_{i2}X_2+\dots+l_{ip}X_p,(i=1,2,\dots,p) Fi=li1X1+li2X2++lipXp,(i=1,2,,p)

3.7 系数的简单分析

对于某个主成分而言,指标前面的系数越大(即 l i j l_{ij} lij),代表该指标对于该主成分的影响越大。


四、案例分析(python)

参考了这个链接:主成分分析(PCA)及其可视化——python。其中提供了两种方法,分别对应3.1为标准化去中心化的步骤,每一步都有注释和代码,很详细!

还有这个写的太好了qaq,英文的球球大家一定要看:Principal Component Analysis in 3 Simple Steps

4.1 一步一步PCA

1. 数据集
是从这部分的第一个链接里随便扣出来的部分数据,如果大家感兴趣可以玩玩。

链接:https://pan.baidu.com/s/108JPN6LGg7GJfxCiJaItZA
提取码:3w5u

2. 安装库

pip install pandas
pip install numpy
pip install seaborn
pip install matplotlib
pip install sklearn
pip install factor_analyzer

3. 读取数据集

import pandas as pd
import numpy as np
import seaborn as sns
# 读取数据集
df = pd.read_csv(r"D:\vscpro\PyThon\data.csv",
     sep=',',
     header=None).reset_index(drop=True)
df.columns = ['a', 'b', 'c']
df.dropna(how="all", inplace=True)
df.tail()

4. 适合性检验(Bartlett && KMO)

from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity
from factor_analyzer.factor_analyzer import calculate_kmo

df_check = df
# Bartlett 球状检验 
chi_square_value, p_value = calculate_bartlett_sphericity(df_check)
print("Bartlett=", chi_square_value, p_value)

# KMO检验(>0.5为好,越靠近1越好)
kmo_all, kmo_model = calculate_kmo(df_check)
print("KMO=", kmo_all)

5. 标准化

# 标准化
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
X = df.iloc[:, 0:3].values
Y = df.iloc[:, 2].values
X_std = StandardScaler().fit_transform(X)

df = preprocessing.scale(df)
print(df)

6. 法一:计算系数相关矩阵并特征求解
金融领域常使用相关矩阵代替协方差矩阵。

# 系数相关性矩阵
covX = np.around(np.corrcoef(df.T), decimals = 3)
# 系数相关矩阵特征求解
featValue, featVec=  np.linalg.eig(covX.T)
print(featValue, featVec)

7. 法二:计算协方差矩阵并特征求解

# 协方差矩阵
# ①写法:
# mean_vec = np.mean(X_std, axis=0)
# covX = (X_std - mean_vec).T.dot((X_std - mean_vec)) / (X_std.shape[0]-1)
# ②写法:
covX = np.cov(X_std.T)
# print(covX)

# 协方差矩阵特征求解
cov_mat = np.cov(X_std.T)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)

# 基于相关矩阵的标准化数据的特征分解
cor_mat1 = np.corrcoef(X_std.T)
eig_vals, eig_vecs = np.linalg.eig(cor_mat1)

# 基于相关矩阵的原始数据的特征分解
cor_mat2 = np.corrcoef(X.T)
eig_vals, eig_vecs = np.linalg.eig(cor_mat2)
print(eig_vals, eig_vecs)

8. 计算贡献率

# 特征值排序输出
featValue = sorted(featValue)[::-1]

# 贡献度
gx = featValue / np.sum(featValue)

#累计贡献度
lg = np.cumsum(gx)
print(featValue, gx, lg)

9. 选取主成分

# 选取主成分,一般要超过80%或85%
k = [i for i in range(len(lg)) if lg[i] < 0.85]
k = list(k)
print(k)


10. 表示主成分

# 主成分对应的特征向量矩阵
selectVec = np.matrix(featVec.T[k]).T
selectVe = selectVec*(-1)
print(selectVec)

# 表示主成分
finalData = np.dot(X_std, selectVec)
print(finalData)

11. 绘制图像

import matplotlib.pyplot as plt
# 绘制散点图和折线图
plt.scatter(range(1, df.shape[1] + 1), featValue)
plt.plot(range(1, df.shape[1] + 1), featValue)

plt.title("Plot")  
plt.xlabel("Factors")
plt.ylabel("Eigenvalue")
 
plt.grid()
plt.show()

4.2 sklearn的PCA

这个数据集是经典鸢尾花~

from sklearn.decomposition import PCA as sklearnPCA
sklearn_pca = sklearnPCA(n_components=2)
Y_sklearn = sklearn_pca.fit_transform(X_std)

# draw
with plt.style.context('seaborn-whitegrid'):
    plt.figure(figsize=(6, 4))
    for lab, col in zip(('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'),
                        ('blue', 'red', 'green')):
        plt.scatter(Y_sklearn[y==lab, 0],
                    Y_sklearn[y==lab, 1],
                    label=lab,
                    c=col)
    plt.xlabel('Principal Component 1')
    plt.ylabel('Principal Component 2')
    plt.legend(loc='lower center')
    plt.tight_layout()
    plt.show()

4.3 其他实现代码(长期更新)

这部分用来堆堆其他大佬们写的代码,方便后面学习和使用。

4.3.1 numpy实现和sklearn实现

来自主成分分析(PCA)原理详解

(1)PCA的Python实现

##Python实现PCA
import numpy as np
def pca(X,k):#k is the components you want
  #mean of each feature
  n_samples, n_features = X.shape
  mean=np.array([np.mean(X[:,i]) for i in range(n_features)])
  #normalization
  norm_X=X-mean
  #scatter matrix
  scatter_matrix=np.dot(np.transpose(norm_X),norm_X)
  #Calculate the eigenvectors and eigenvalues
  eig_val, eig_vec = np.linalg.eig(scatter_matrix)
  eig_pairs = [(np.abs(eig_val[i]), eig_vec[:,i]) for i in range(n_features)]
  # sort eig_vec based on eig_val from highest to lowest
  eig_pairs.sort(reverse=True)
  # select the top k eig_vec
  feature=np.array([ele[1] for ele in eig_pairs[:k]])
  #get new data
  data = np.dot(norm_X,np.transpose(feature))
  return data

X = np.array([[-1, 1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])

print(pca(X,1))

(2)sklearn的PCA

##用sklearn的PCA
from sklearn.decomposition import PCA
import numpy as np
X = np.array([[-1, 1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
pca = PCA(n_components=1)pca.fit(X)
print(pca.transform(X))

五、补充总结

PCA的数学思想:

  • 根据p个特征的线性组合,得到一个新的特征z,使得该特征的方差最大,该特征即为主成分。
  • 再次寻找p个特征的线性组合,得到新的特征,该特征与之前得到的主成分线性无关,且方差最大。

其余要点:

  • 如果每个主成分的贡献率都相差不多,则不建议使用PCA。因为它一定程度上舍弃了部分信息,来提高整体的计算效率。
  • 对于降维形成的主成分,我们经常无法找到其在实际情况中所对应的特征,即主成分的解释其含义一般带有模糊性,不像原始变量的含义那么清楚确切,这也是PCA的缺陷所在。
  • PCA不可用于评价类模型。可用于聚类、回归,如回归分析解决多重共线性。

六、参考链接

  1. 如何理解主成分分析法 (PCA)
  2. 清风数学建模学习笔记——主成分分析(PCA)原理详解及案例分析
  3. PCA的数学原理
  4. 【数据处理方法】主成分分析(PCA)原理分析
  5. 协方差矩阵和矩阵相关系数的理解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/131021.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第七章 :Spring Boot web开发常用注解(二)

第七章 :Spring Boot web开发常用注解(二) 前言 本章节知识重点:作者结合自身开发经验,以及觉察到的一个现象:Springboot注解全面理解和掌握的并不多,对注解进行了全面总结,共分两个章节,可以作为web开发工程师注解参考手册,SpringBoot常用注解大全,一目了然!。本…

【码银送书第十期】《强化学习:原理与Python实战》

目录 1.什么是人工智能对齐 2.为什么要研究人工智能对齐 3.人工智能对齐的常见方法 1.什么是人工智能对齐 人工智能对齐&#xff08;AI Alignment&#xff09;指让人工智能的行为符合人的意图和价值观。 人工智能系统可能会出现“不对齐”&#xff08;misalign&#xff09;的…

助力细胞分选,“量身定做”您的磁珠

免疫磁珠因结合了固化试剂特有的优点与免疫学反应的高度特异性而渗透到病理、生理、药理、微生物、生化以及分子遗传学等各个领域。其中&#xff0c;随着细胞分选技术的不断发展&#xff0c;免疫磁珠细胞分选技术已越来越受到研究者的认可&#xff0c;磁珠细胞分选可以从异质细…

linux:使用nc(netcat)命令进行端口检测,并使用Docker管理容器

需求&#xff1a; 循环检测IP:端口是否能正常连接&#xff0c;能连接则关闭docker服务&#xff0c;不能连接则开启docker服务实现&#xff1a;  &esmp;通过创建linux可执行shell脚本文件&#xff0c;再设置crontab调度执行实现上述需求。详细步骤如下&#xff1a; 创建sh…

matlab中的iddata函数的初步理解和使用程序举例

matlab中的iddata函数的初步理解和程序举例 一、iddata函数功能 iddata函数常用于系统识别分析领域数据分析方面。该函数在时域或频域中&#xff0c;将用于系统识别的输入输出数据及其特性数据的生成对象数据类型。即&#xff0c;可以使用iddata函数封装要标识的系统的输入和…

文件扩展名批量修改:txt文件扩展名批量修改为doc文档,高效办公的方法

在我们的日常工作中&#xff0c;经常需要处理大量的文本文件&#xff0c;这些文件可能以.txt为扩展名&#xff0c;而我们需要将其修改为.doc扩展名以方便进一步的操作。这种情况下&#xff0c;我们引用云炫文件管理器来将扩展名批量修改&#xff0c;提升办公的效率。在进行文件…

万物皆数——用matlab求解二阶微分方程

一、背景 毕达哥拉斯的“万物皆数”哲学观点表达了一个理念&#xff0c;即宇宙万物都可以通过数学语言来描述&#xff0c;数是万物的本原。 勾股定理就是毕达哥拉斯提出&#xff0c;因此在西方勾股定理也被叫做毕达哥拉斯定理。 工科类的专业&#xff0c;越到后面越感觉到数学…

从开源项目聊鱼眼相机的“360全景拼接”

目录 概述 从360全景的背景讲起 跨过参数标定聊透视变化 拼接图片后处理 参考文献 概述 写这篇文章的原因完全源于开源项目(GitHub参阅参考文献1)。该项目涵盖了环视系统的较为全貌的制作过程&#xff0c;包含完整的标定、投影、拼接和实时运行流程。该篇文章主要是梳理全…

Wincc flexible SMART v4 报警蜂鸣器的基本使用方法示例

Wincc flexible SMART v4 报警蜂鸣器的基本使用方法示例 WinCC flexible SMART V4 SP1 软件针对SMART LINE V4 面板新增了触发蜂鸣器报警功能,但要注意该功能仅支持固件版本为 4.0.1.0 及以上的设备。 可通过配置以下两个系统函数来触发蜂鸣器: 举例说明: 组态离散量报警,在…

xss 通过秘籍

终极测试代码 <sCr<ScRiPt>IPT>OonN"\/(hrHRefEF)</sCr</ScRiPt>IPT> 第一关&#xff08;没有任何过滤&#xff09; 使用终极测试代码&#xff0c;查看源码 发现没有任何过滤&#xff0c;直接使用javascrupt中的alert弹框 <script>aler…

树之二叉排序树(二叉搜索树)

什么是排序树 说一下普通二叉树可不是左小右大的 插入的新节点是以叶子形式进行插入的 二叉排序树的中序遍历结果是一个升序的序列 下面是两个典型的二叉排序树 二叉排序树的操作 构造树的过程即是对无序序列进行排序的过程。 存储结构 通常采用二叉链表作为存储结构 不能 …

口水战,余承东从没输过,小鹏最终只能低头和解

小鹏汽车创始人何小鹏近日发言称与余承东握手言和&#xff0c;感谢余总的大度&#xff0c;还表示与余承东探讨了技术路线&#xff0c;双方成为好朋友&#xff0c;可以看出这场口水战最终的赢家还是余承东。 这场口水战先以何小鹏吐槽友商的AEB误触太多&#xff0c;还声言99%是假…

基于springboot实现家具商城管理系统项目【项目源码】计算机毕业设计

基于springboot实现家具商城管理系统演示 Java语言简介 Java是由SUN公司推出&#xff0c;该公司于2010年被oracle公司收购。Java本是印度尼西亚的一个叫做爪洼岛的英文名称&#xff0c;也因此得来java是一杯正冒着热气咖啡的标识。Java语言在移动互联网的大背景下具备了显著的…

VMware部署CentOS7

一、创建虚拟机 1、点击新建虚拟机 2、选择自定义 下一步 3、点击下一步 4、选择稍后安装操作系统 5、选择linux 下一步 6、选择要安装的centos 版本 这里选择centos7 7、自定义虚拟机名称 设置虚拟机运行空间 8、配置处理器&#xff0c;使用默认 1个处理器 1核 9、修改虚拟机…

企业级操作之STM32项目版本管理方法

在MCU开发过程中&#xff0c;有时候需要软件的迭代&#xff0c;比如从V1.9升级到V1.10&#xff0c;或者从V23.09.23升级到V23.09.24&#xff0c;我们常常通过手动改动字符串或者数组来实现这个功能&#xff0c;从现在开始&#xff0c;我们会使用Keil的内置宏__DATE__和__TIME__…

wav格式如何转mp3?

wav格式如何转mp3&#xff1f;WAV格式是一种高品质的音频文件格式&#xff0c;其采用无损压缩技术存储音频数据。通常&#xff0c;WAV文件使用PCM编码方式将声音信号转换为数字信号&#xff0c;并按照一定规则存储到文件中。这种编码方式可以确保音频数据的完整性和准确性&…

python注释(快捷键)

首先介绍以下三种注释方式&#xff1a; # 123&#xff08;单行注释&#xff09; """123"""&#xff08;多行注释&#xff09; 123&#xff08;多行注释&#xff09; 下面介绍一下快捷键&#xff1a; Ctrl/ 注释单行&#xff1a;指针只要在这行代…

关于近期360自动屏保导致的问题

本身是一个好产品 但是对于某些应用就有点画蛇添足了 1、导致K3无法使用 K3中间层需要用户持续登入系统 2、导致系统停止工作 3、停止网络 4、占用系统资源 5、占用网络资源 6、占用硬件资源 。。。。。。 对于24小时开机的用户影响巨大 对于局域网信息点多的网络影响巨…

c语言:用指针解决有关字符串等问题

题目1&#xff1a;将一个字符串str的内容颠倒过来&#xff0c;并输出。 数据范围&#xff1a;1≤len(str)≤10000 代码和思路&#xff1a; #include <stdio.h> #include<string.h> int main() {char str1[10000];gets(str1);//读取字符串内容char* p&str1[…

无需标注海量数据,目标检测新范式OVD

当前大火的多模态GPT-4在视觉能力上只具备目标识别的能力&#xff0c;还无法完成更高难度的目标检测任务。而识别出图像或视频中物体的类别、位置和大小信息&#xff0c;是现实生产中众多人工智能应用的关键&#xff0c;例如自动驾驶中的行人车辆识别、安防监控应用中的人脸锁定…