C# OpenCvSharp DNN HybridNets 同时处理车辆检测、可驾驶区域分割、车道线分割

效果

项目

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Numerics;
using System.Text;
using System.Windows.Forms;
 
namespace OpenCvSharp_DNN_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }
 
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
 
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
 
        float confThreshold;
        float nmsThreshold;
        string modelpath;
        string anchorpath;
 
        int inpHeight;
        int inpWidth;
 
        float[] mean = { 0.485f, 0.456f, 0.406f };
        float[] std = { 0.229f, 0.224f, 0.225f };
 
        List<string> det_class_names = new List<string>() { "car" };
        List<string> seg_class_names = new List<string>() { "Background", "Lane", "Line" };
        List<Vec3b> class_colors = new List<Vec3b> { new Vec3b(0, 0, 0), new Vec3b(0, 255, 0), new Vec3b(255, 0, 0) };
 
        int det_num_class = 1;
        int seg_numclass = 3;
 
        float[] anchors;
 
        Net opencv_net;
        Mat BN_image;
 
        Mat image;
        Mat result_image;
 
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
 
            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";
 
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }
 
        private void Form1_Load(object sender, EventArgs e)
        {
 
            confThreshold = 0.3f;
            nmsThreshold = 0.5f;
            modelpath = "model/hybridnets_256x384.onnx";
            anchorpath = "model/anchors_73656.bin";
 
            inpHeight = 256;
            inpWidth = 384;
 
            opencv_net = CvDnn.ReadNetFromOnnx(modelpath);
 
            FileStream fileStream = new FileStream(anchorpath, FileMode.Open);
            //读二进制文件类
            BinaryReader br = new BinaryReader(fileStream, Encoding.UTF8);
            int len = 73656;
            anchors = new float[len];
 
            byte[] byteTemp;
            float fTemp;
            for (int i = 0; i < len; i++)
            {
                byteTemp = br.ReadBytes(4);
                fTemp = BitConverter.ToSingle(byteTemp, 0);
                anchors[i] = fTemp;
            }
            br.Close();
 
            image_path = "test_img/test.jpg";
            pictureBox1.Image = new Bitmap(image_path);
 
        }
 
        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();
 
            image = new Mat(image_path);
 
            int newh = 0, neww = 0, padh = 0, padw = 0;
            Mat resize_img = Common.ResizeImage(image, inpHeight, inpWidth, ref newh, ref neww, ref padh, ref padw);
 
            float ratioh = (float)image.Rows / newh;
            float ratiow = (float)image.Cols / neww;
 
            Mat normalize = Common.Normalize(resize_img, mean, std);
 
            dt1 = DateTime.Now;
 
            BN_image = CvDnn.BlobFromImage(normalize);
 
            //配置图片输入数据
            opencv_net.SetInput(BN_image);
 
            //模型推理,读取推理结果
            Mat[] outs = new Mat[3] { new Mat(), new Mat(), new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();
 
            opencv_net.Forward(outs, outBlobNames);
 
            dt2 = DateTime.Now;
 
            float* classification = (float*)outs[0].Data;
            float* box_regression = (float*)outs[1].Data;
            float* seg = (float*)outs[2].Data;
 
            List<Rect> boxes = new List<Rect>();
            List<float> confidences = new List<float>();
            List<int> classIds = new List<int>();
 
            int num_proposal = outs[1].Size(1);  //输入的是单张图, 第0维batchsize忽略
 
            for (int n = 0; n < num_proposal; n++)
            {
                float conf = classification[n];
 
                if (conf > confThreshold)
                {
                    int row_ind = n * 4;
                    float x_centers = box_regression[row_ind + 1] * anchors[row_ind + 2] + anchors[row_ind];
                    float y_centers = box_regression[row_ind] * anchors[row_ind + 3] + anchors[row_ind + 1];
                    float w = (float)(Math.Exp(box_regression[row_ind + 3]) * anchors[row_ind + 2]);
                    float h = (float)(Math.Exp(box_regression[row_ind + 2]) * anchors[row_ind + 3]);
 
                    float xmin = (float)((x_centers - w * 0.5 - padw) * ratiow);
                    float ymin = (float)((y_centers - h * 0.5 - padh) * ratioh);
                    w *= ratiow;
                    h *= ratioh;
                    Rect box = new Rect((int)xmin, (int)ymin, (int)w, (int)h);
                    boxes.Add(box);
                    confidences.Add(conf);
                    classIds.Add(0);
                }
 
            }
 
            int[] indices;
            CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);
 
            result_image = image.Clone();
 
            for (int ii = 0; ii < indices.Length; ++ii)
            {
                int idx = indices[ii];
                Rect box = boxes[idx];
                Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);
                string label = det_class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");
                Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 0.75, new Scalar(0, 0, 255), 1);
            }
 
            int area = inpHeight * inpWidth;
            int i = 0, j = 0, c = 0;
            for (i = 0; i < result_image.Rows; i++)
            {
                for (j = 0; j < result_image.Cols; j++)
                {
                    int x = (int)((j / ratiow) + padw);  ///从原图映射回到输出特征图
                    int y = (int)((i / ratioh) + padh);
                    int max_id = -1;
                    float max_conf = -10000;
                    for (c = 0; c < seg_numclass; c++)
                    {
                        float seg_conf = seg[c * area + y * inpWidth + x];
                        if (seg_conf > max_conf)
                        {
                            max_id = c;
                            max_conf = seg_conf;
                        }
                    }
                    if (max_id > 0)
                    {
                        result_image.Set<Vec3b>(i, j, class_colors[max_id]);
                    }
                }
            }
 
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
 
        }
 
        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }
 
        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

下载

源码下载

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/130169.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何使用CORS和CSP保护前端应用程序安全

前端应用在提供无缝用户体验方面起着核心作用。在当今互联网的环境中&#xff0c;第三方集成和API的普及使得确保强大的安全性至关重要。安全漏洞可能导致数据盗窃、未经授权访问以及品牌声誉受损。本文将向您展示如何使用CORS和CSP为您的网页增加安全性。 嗨&#xff0c;大家好…

使用Redis实现热搜功能

Redis热搜 原理数据类型redis操作简单实现 实操封装方法执行方法最后使用springboot的定时任务对热搜榜单进行维护 原理 使用redis实现热搜的原理就是维护一个zset集合&#xff0c;然后使用score作为当前搜索词的搜索量&#xff0c;score越高的搜索词就说明该搜索词热度越高。…

【蓝桥杯选拔赛真题17】C++时间换算 第十二届蓝桥杯青少年创意编程大赛C++编程选拔赛真题解析

目录 C/C++时间换算 一、题目要求 1、编程实现 2、输入输出 二、算法分析 <

USB偏好设置-Android13

USB偏好设置 1、USB偏好设置界面和入口2、USB功能设置2.1 USB功能对应模式2.2 点击设置2.3 广播监听刷新 3、日志开关3.1 Evet日志3.2 代码中日志开关3.3 关键日志 4、异常 1、USB偏好设置界面和入口 设置》已连接的设备》USB packages/apps/Settings/src/com/android/setting…

CSS 移动端 1px(线条/边框) 不同机型上显示粗细不同,解决办法

由于不同的手机有不同的像素密度导致的。如果移动显示屏的分辨率始终是普通屏幕的2倍&#xff0c;1px的边框在devicePixelRatio2的移动显示屏下会显示成2px&#xff0c;所以在高清瓶下看着1px总是感觉变胖了 <!DOCTYPE html> <html lang"en"> <head&g…

快速修复因相机断电导致视频文件打不开的问题

3-5 本文主要解决因相机突然断电导致拍摄的视频文件打不开的问题。 在日常工作中&#xff0c;有时候需要使用相机拍摄视频&#xff0c;比如现在有不少短视频拍摄的需求&#xff0c;如果因电池突然断电的原因&#xff0c;导致拍出来的视频播放不了&#xff0c;这时候就容易出大…

自适应模糊PID控制器在热交换器温度控制中的应用

热交换器是一种常见的热能传递设备&#xff0c;广泛应用于各个工业领域。对热交换器温度进行有效控制具有重要意义&#xff0c;可以提高能源利用效率和产品质量。然而&#xff0c;受到热传导特性和外部环境变化等因素的影响&#xff0c;热交换器温度控制难度较大。本文提出一种…

个人怎么投资伦敦金?

伦敦金是一种被广泛交易的黄金合约&#xff0c;是投资者参与黄金市场的一种交易方式。伦敦金投资也是黄金交易中最为方便快捷的一个种类&#xff0c;在黄金交易市场中占有较大的比例&#xff0c;每天都有来自全球各地的投资者参与买卖&#xff0c;是实现财富增益的一个有效途径…

数据库数据恢复—MSSQL报错“附加数据库错误823”如何恢复数据?

数据库故障&分析&#xff1a; MSSQL Server数据库比较常见的报错是“附加数据库错误823”。如果数据库有备份&#xff0c;只需要还原备份即可&#xff1b;如果无备份或者备份不可用&#xff0c;则需要使用专业的数据恢复手段去恢复数据。 MSSQL Server数据库出现“823”的报…

宠物医院信息展示预约小程序的效果如何

养宠家庭越来越多&#xff0c;随之带来的就是宠物健康问题&#xff0c;生活条件稍微好点的家庭&#xff0c;只要宠物生病或洗护、寄养、美容等就会前往宠物医院&#xff0c;而近些年来&#xff0c;市场中的宠物医院也在连年增加&#xff0c;可以预见市场需求度较高。 而对宠物…

基于遗传算法优化的直流电机PID控制器设计

PID控制器是工业控制中常用的一种控制算法&#xff0c;通过不断调节比例、积分和微分部分来实现对系统的稳定控制。然而&#xff0c;在一些复杂系统中&#xff0c;传统的PID参数调节方法可能存在局限性。本文将介绍一种基于遗传算法优化的直流电机PID控制器设计方法&#xff0c…

[极客大挑战 2019]BuyFlag 1(两种解法)

题目环境&#xff1a; FLAG NEED YOUR 100000000 MONEY flag需要你的100000000元 F12瞅瞅源代码&#xff1a; if (isset($_POST[password])){ $password $_POST[password]; if (is_numeric($password)) { echo "password cant be number" } elseif ($pas…

Android RxJava3 原理浅析

使用 val retrofit Retrofit.Builder().baseUrl("https://api.github.com/").addConverterFactory(GsonConverterFactory.create()).addCallAdapterFactory(RxJava3CallAdapterFactory.create()).build()val api retrofit.create(API::class.java)api.getRepo("…

数据结构之单链表

大家好&#xff0c;我们今天来简单的认识下单链表。 链表的概念及结构 概念&#xff1a;链表是一种物理存储结构上非连续、非顺序的存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的指针链接次序实现的 。 单链表就像图中的火车一样&#xff0c;是由一节一节车厢链接起来…

第12章 PyTorch图像分割代码框架-3:推理与部署

推理模块 模型训练完成后&#xff0c;需要单独再写一个推理模块来供用户测试或者使用&#xff0c;该模块可以命名为test.py或者inference.py&#xff0c;导入训练好的模型文件和待测试的图像&#xff0c;输出该图像的分割结果。inference.py主体部分如代码11-7所示。 代码11-7 …

Linux imu6ull驱动- led

一、GPIO模块结构 开始来啃手册了&#xff0c;打开我们的imx6ull手册。本章我们编写的是GPIO的&#xff0c;打开手册的第28章&#xff0c;这一章就有关于IMX6ULL 的 GPIO 模块结构。 mx6ull一共有5 组 GPIO&#xff08;GPIO1&#xff5e;GPIO5&#xff09; GPIO1 有 32 个引脚&…

C/C++输出硬币翻转 2021年6月电子学会青少年软件编程(C/C++)等级考试一级真题答案解析

目录 C/C硬币翻转 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序编写 四、程序说明 五、运行结果 六、考点分析 C/C硬币翻转 2021年6月 C/C编程等级考试一级编程题 一、题目要求 1、编程实现 假设有N个硬币(N为不大于5000的正整数)&#xff0c;从1…

C语言--汉诺塔【内容超级详细】

今天与大家分享一下如何用C语言解决汉诺塔问题。 目录 一.前言 二.找规律⭐ 三.总结⭐⭐⭐ 四.代码实现⭐⭐ 一.前言 有一部很好看的电影《猩球崛起》⭐&#xff0c;说呀&#xff0c;人类为了抗击癌症发明了一种药物&#x1f357;&#xff0c;然后给猩猩做了实验&#xff0…

2020年五一杯数学建模A题煤炭价格预测问题解题全过程文档及程序

2020年五一杯数学建模 A题 煤炭价格预测问题 原题再现 煤炭属于大宗商品&#xff0c;煤炭价格既受国家相关部门的监管&#xff0c;又受国内煤炭市场的影响。除此之外&#xff0c;气候变化、出行方式、能源消耗方式、国际煤炭市场等其他因素也会影响煤炭价格。请完成如下问题。…

canvas 简单直线轨迹运动与线性插值计算

canvas 简单直线轨迹运动与线性插值计算 一、canvas 直线轨迹运行 添加 canvas 语法提示 通过/** type {HTMLCanvasElement} */代码块 来添加canvas的语法提示 <body><canvas id"canvas"></canvas> </body> <script>/** type {HTM…