机器学习股票大数据量化分析与预测系统 - python 计算机竞赛

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
    • UI界面设计
    • web预测界面
    • RSRS选股界面
  • 3 软件架构
  • 4 工具介绍
    • Flask框架
    • MySQL数据库
    • LSTM
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 机器学习股票大数据量化分析与预测系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

基于机器学习的股票大数据量化分析系统,具有以下功能:

  • 采集保存数据;
  • 分析数据;
  • 可视化;
  • 深度学习股票预测

2 实现效果

UI界面设计

功能简述

在这里插入图片描述

日常数据获取更新

在这里插入图片描述
交易功能
在这里插入图片描述

web预测界面

  • LSTM长时间序列预测
  • RNN预测
  • 机器学习预测
  • 股票指标分析

在这里插入图片描述

预测效果如下:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

RSRS选股界面

在这里插入图片描述

3 软件架构

整体的软件功能结构如下图

在这里插入图片描述

4 工具介绍

Flask框架

简介

Flask是一个基于Werkzeug和Jinja2的轻量级Web应用程序框架。与其他同类型框架相比,Flask的灵活性、轻便性和安全性更高,而且容易上手,它可以与MVC模式很好地结合进行开发。Flask也有强大的定制性,开发者可以依据实际需要增加相应的功能,在实现丰富的功能和扩展的同时能够保证核心功能的简单。Flask丰富的插件库能够让用户实现网站定制的个性化,从而开发出功能强大的网站。

本项目在Flask开发后端时,前端请求会遇到跨域的问题,解决该问题有修改数据类型为jsonp,采用GET方法,或者在Flask端加上响应头等方式,在此使用安装Flask-
CORS库的方式解决跨域问题。此外需要安装请求库axios。

Flask框架图

在这里插入图片描述
代码实例



    from flask import Flask, render_template, jsonify
    import requests
    from bs4 import BeautifulSoup
    from snownlp import SnowNLP
    import jieba
    import numpy as np
    
    app = Flask(__name__)
    app.config.from_object('config')
    
    # 中文停用词
    STOPWORDS = set(map(lambda x: x.strip(), open(r'./stopwords.txt', encoding='utf8').readlines()))
    
    headers = {
        'accept': "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9",
        'accept-language': "en-US,en;q=0.9,zh-CN;q=0.8,zh-TW;q=0.7,zh;q=0.6",
        'cookie': 'll="108296"; bid=ieDyF9S_Pvo; __utma=30149280.1219785301.1576592769.1576592769.1576592769.1; __utmc=30149280; __utmz=30149280.1576592769.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); _vwo_uuid_v2=DF618B52A6E9245858190AA370A98D7E4|0b4d39fcf413bf2c3e364ddad81e6a76; ct=y; dbcl2="40219042:K/CjqllYI3Y"; ck=FsDX; push_noty_num=0; push_doumail_num=0; douban-fav-remind=1; ap_v=0,6.0',
        'host': "search.douban.com",
        'referer': "https://movie.douban.com/",
        'sec-fetch-mode': "navigate",
        'sec-fetch-site': "same-site",
        'sec-fetch-user': "?1",
        'upgrade-insecure-requests': "1",
        'user-agent': "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36 Edg/79.0.309.56"
    }
    
    login_name = None


    # --------------------- html render ---------------------
    @app.route('/')
    def index():
        return render_template('index.html')


    @app.route('/search')
    def search():
        return render_template('search.html')


    @app.route('/search/')
    def search2(movie_name):
        return render_template('search.html')


MySQL数据库

简介

MySQL是一个关系型数据库,由瑞典MySQL AB公司开发,目前已经被Oracle收购。

Mysql是一个真正的多用户、多线程的SQL数据库。其使用的SQL(结构化查询语言)是世界上最流行的和标准化的数据库语言,每个关系型数据库都可以使用MySQL是以客户机/服务器结构实现的,也就是俗称的C/S结构,它由一个服务器守护程序mysqld和很多不同的客户程序和库组成。

Python操作mysql数据库

本项目中我们需要使用python来操作mysql数据库,因此需要用到 pymysql 这个库

安装:


pip install pymysql

数据库连接实例:


# 导入pymysql
import pymysql

# 定义一个函数
# 这个函数用来创建连接(连接数据库用)
def mysql_db():
    # 连接数据库肯定需要一些参数
    conn = pymysql.connect(
        host="127.0.0.1",
        port=3307,
        database="ksh",
        charset="utf8",
        user="root",
        passwd="123456"
    )

if __name__ == '__main__':
    mysql_db()

数据库连接实例:


# 导入pymysql
import pymysql

# 定义一个函数
# 这个函数用来创建连接(连接数据库用)
def mysql_db():
    # 连接数据库肯定需要一些参数
    conn = pymysql.connect(
        host="127.0.0.1",
        port=3307,
        database="ksh",
        charset="utf8",
        user="root",
        passwd="123456"
    )

if __name__ == '__main__':
    mysql_db()

LSTM

简介

长短期记忆(Long short-term memory,
LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。

LSTM结构(图右)和普通RNN的主要输入输出区别如下所示。
在这里插入图片描述
在这里插入图片描述
Torch代码实现


import torch
from sklearn.metrics import accuracy_score

#定义需要的模型结构,继承自torch.nn.Module
#必须包含__init__和forward两个功能
class mylstm(torch.nn.Module):
    def __init__(self, lstm_input_size, lstm_hidden_size, lstm_batch, lstm_layers):
        # 声明继承关系
        super(mylstm, self).__init__()
 
        self.lstm_input_size, self.lstm_hidden_size = lstm_input_size, lstm_hidden_size
        self.lstm_layers, self.lstm_batch = lstm_layers, lstm_batch
 
        # 定义lstm层
        self.lstm_layer = torch.nn.LSTM(self.lstm_input_size, self.lstm_hidden_size, num_layers=self.lstm_layers, batch_first=True)
        # 定义全连接层 二分类
        self.out = torch.nn.Linear(self.lstm_hidden_size, 2)
 
    def forward(self, x):
        # 激活
        x = torch.sigmoid(x)
        # LSTM
        x, _ = self.lstm_layer(x)
        # 保留最后一步的输出
        x = x[:, -1, :]
        # 全连接
        x = self.out(x)
        return x
 
    def init_hidden(self):
        #初始化隐藏层参数全0
        return torch.zeros(self.lstm_batch, self.lstm_hidden_size)

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/123741.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MSSQL 配置ORACLE ​链接服务器

在有些场景,我们需要整合其他异构数据库的数据。我们可以使用代码去读取,经过处理后,再将数据保存到MSSQL数据库中。如果数据量比较大,但处理的逻辑并不复杂的情况下,这种方式就不是最好的办法。这时可以使用使用链接服…

CSDN每日一题学习训练——Java版(逆序输出、Z 字形变换、输出每天是应该学习还是休息还是锻炼)

版本说明 当前版本号[20231108]。 版本修改说明20231108初版 目录 文章目录 版本说明目录逆序输出题目解题思路代码思路参考代码 Z 字形变换题目解题思路代码思路参考代码 输出每天是应该学习还是休息还是锻炼题目代码思路参考代码 逆序输出 题目 如:abcd1234&…

【714. 买卖股票的最佳时机含手续费】

目录 一、题目解析二、算法原理三、代码实现 一、题目解析 二、算法原理 三、代码实现 class Solution { public:int maxProfit(vector<int>& prices, int fee) {int nprices.size();vector<vector<int>> dp(n,vector<int>(2));dp[0][0]-prices[0…

网络安全深入学习第八课——正向代理(工具:ReGeorg)

文章目录 一、环境配置二、开始模拟1、拿下跳板机的Webshell权限&#xff0c;并上传shell文件1.1、查看跳板机网络环境1.2、查看arp表 2、使用ReGeorg来建立连接2.1、生产ReGeorg隧道文件2.2、上传ReGeorg隧道的PHP脚本到跳板机2.3、连接隧道2.4、尝试浏览器连接 3、使用Proxif…

微服务使用指南

微服务使用指南 1.初识微服务 微服务可以认为是一种分布式架构的解决方案&#xff0c;提供服务的独立性和完整性&#xff0c;做到服务的高内聚、低耦合。 目前服务架构主要包含&#xff1a;单体架构和分布式架构。 1.1 单体架构 单体架构&#xff1a;把所有业务功能模块都…

【代码随想录】算法训练计划16

【代码随想录】算法训练计划04 1、111. 二叉树的最小深度 题目&#xff1a; 给定一个二叉树&#xff0c;找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明&#xff1a;叶子节点是指没有子节点的节点。 思路&#xff1a; 用递归&#xff0…

在已有的虚拟环境中升级python版本

对于现有的虚拟环境&#xff0c;想升级python版本方法&#xff0c;试了无数的方法终于找对了。 1.首先activate对应的虚拟环境&#xff0c;然后输入下面的命令&#xff1a; conda install python3.8 建议加上镜像源 ​conda install python3.8 -i https://pypi.tuna.tsingh…

css实现进度条

预期样式 方法一 <script setup> import { ref } from "vue"; // import ScreenLeft from "./ScreenLeft/index.vue"; const width ref("76.5%"); </script><template>Screen<div class"progress-contain">…

操作系统 day08(进程通信)

进程通信的概念 进程间通信是指两个进程之间产生数据交互进程通信需要操作系统的支持&#xff0c;由于进程是分配系统资源&#xff08;包括内存地址&#xff09;的单位&#xff0c;因此各进程拥有的内存地址空间相互独立。同时为了保证安全&#xff0c;一个进程不能直接访问另…

如何实现云端开发能力快速提升?【DevRun】云上开发创新实践带你实现

随着企业数字化的转型趋势&#xff0c;软件成为数字化转型的关键驱动力&#xff0c;在云计算越来越普及且作用愈发重要的今天&#xff0c;现代应用正以难以想象的速度在增长&#xff0c;同时对软件开发工具提出了新的要求。 华为云CodeArts作为一站式云上开发创新工具&#xf…

【Python自学笔记】Flask调教方法Internel Server Error

收到老师的小组作业任务说是写一个自动报告程序&#xff0c;用PythonSQLiteHTML实现&#xff0c;好吧。 前面没什么问题&#xff0c;打开VSCode&#xff0c;连数据库读数据处理可视化模板拼凑&#xff0c;最后调用Flask框架出网页报告的时候总报错连接不了。 但换了jinjia2的渲…

【Linux】文件重定向以及一切皆文件

文章目录 前言一、重定向二、系统调用dup2三、重定向的使用四、一切皆文件 前言 Linux进程默认情况下会有3个缺省打开的文件描述符&#xff0c;分别是标准输入0&#xff0c; 标准输出1&#xff0c; 标准错误2&#xff0c; 0,1,2对应的物理设备一般是&#xff1a;键盘&#xff…

Git的简介以及基本使用

目录 一.Git的简介 拓展&#xff1a;Git与SVN的区别&#xff08;各自的优点与缺点&#xff09; 二.Git文件的4种状态 三.Git的常用命令 搭建完成之后&#xff0c;将项目文件也上传之后&#xff0c;现在模拟其他人来下载这个代码 今天就分享到这啦&#xff01;&#xff01;…

第五章:Testing Modules

文章目录 State and ProgramsTestability of State-Based Programsintrusively test 侵入性测试Non-intrusive test 非侵入测试java和其他工具的实践有限状态机进行单元测试(Unit testing with FSA)构建状态机步骤step1:识别 FSA 状态step2:确定某个状态下的可用操作step3:…

pytorch_神经网络构建5

文章目录 生成对抗网络自动编码器变分自动编码器重参数GANS自动编码器变分自动编码器gans网络Least Squares GANDeep Convolutional GANs 生成对抗网络 这起源于一种思想,假如有一个生成器,从原始图片那里学习东西,一个判别器来判别图片是真实的还是生成的, 假如生成的东西能以…

Qt 二维码生成与识别

1.简介 QZXing是一个基于Qt框架的二维码解码库&#xff0c;它是对ZXing&#xff08;Zebra Crossing&#xff09;开源项目的一个Qt封装。ZXing是一个功能强大的开源二维码解码库&#xff0c;支持多种类型的码&#xff0c;包括QR码、DataMatrix码、Aztec码等。 QZXing提供了一个…

Flink(一)【WordCount 快速入门】

前言 学完了 Hadoop、Spark&#xff0c;本想着先把 Kafka、Flume 这些工具先学完的&#xff0c;但想了想还是把核心的技术先学完最后再去把那些工具学学。 最近心有点累哈哈哈&#xff0c;偷偷立个 flag&#xff0c;反正也没人看&#xff0c;明年的今天来这里还愿哈&#xff0c…

vue3错误排查-POST请求的body参数 传参方式form-data和json

问题&#xff1a;vue3实现登录功能&#xff0c;登录成功后 跳转到登陆后的界面 一秒后 闪退回登录页 对应的输出结果也一闪而过&#xff0c;反复复查了代码&#xff0c;没问题。&#xff08;封装的 post 请求未成功发起&#xff09; 自测&#xff1a;进行断点输出调试。强行跳…

接口幂等性详解

1. 什么是幂等性 幂等性指的是对同一个操作的多次执行所产生的影响与一次执行的影响相同。无论操作执行多少次&#xff0c;系统状态都应该保持一致。 在计算机科学和网络领域中&#xff0c;幂等性通常用来描述服务或操作的特性。对于RESTful API或HTTP方法&#xff0c;一个幂…

049-第三代软件开发-软件部署脚本(一)

第三代软件开发-软件部署脚本(一) 文章目录 第三代软件开发-软件部署脚本(一)项目介绍软件部署脚本(一)其他方式 关键字&#xff1a; Qt、 Qml、 bash、 shell、 脚本 项目介绍 欢迎来到我们的 QML & C 项目&#xff01;这个项目结合了 QML&#xff08;Qt Meta-Object…