八百字讲清楚——BCEWithLogitsLoss二分类损失函数

BCEWithLogitsLoss是一种用于二分类问题的损失函数,它将Sigmoid函数和二元交叉熵损失结合在一起。

假设我们有一个大小为 N N N的二分类问题,其中每个样本 x i x_i xi有一个二元标签 y i ∈ 0 , 1 y_i\in {0,1} yi0,1,并且我们希望预测每个样本的概率为 p i ∈ [ 0 , 1 ] p_i\in [0,1] pi[0,1]。则BCEWithLogitsLoss可以表示为:

其中, σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1+e^{-x}} σ(x)=1+ex1Sigmoid函数, log ⁡ \log log是自然对数。在实践中,由于数值计算的稳定性问题,通常使用函数库中提供的BCEWithLogitsLoss函数来计算损失。

p i p_i pi表示样本 x i x_i xi被预测为正例(1)的概率。在二分类问题中,BCEWithLogitsLoss通常用于处理模型输出的logits(即未经过Sigmoid函数激活的输出),通过将logits作为输入,结合Sigmoid函数进行概率估计和损失计算。在计算过程中,BCEWithLogitsLoss会首先对logits进行Sigmoid激活,然后计算预测概率和二元交叉熵损失。

y i y_i yi表示样本 x i x_i xi的真实标签。在二分类问题中, y i y_i yi通常为01,表示样本 x i x_i xi是否属于正例(1)类别。在BCEWithLogitsLoss中, y i y_i yi用于计算二元交叉熵损失,帮助模型学习将预测结果和真实标签匹配的能力。具体来说,当 y i = 1 y_i=1 yi=1时,BCEWithLogitsLoss会惩罚模型的预测值偏离1的程度;当 y i = 0 y_i=0 yi=0时,BCEWithLogitsLoss会惩罚模型的预测值偏离0的程度。因此, y i y_i yiBCEWithLogitsLoss中是非常重要的一部分。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/12026.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Seal AppManager发布:基于平台工程理念的全新应用部署管理体验

4月12日,数澈软件Seal(以下简称“Seal”)宣布推出新一代应用统一部署管理平台 Seal AppManager,采用平台工程的理念,降低基础设施操作的复杂度为研发和运维团队提供易用、一致的应用管理和部署体验,进而提升…

28岁,他是如何成为上市公司测试总监的

现在的大环境下,各行各业都开始内卷起来,测试也不例外,企业要求也越来越高,“会代码”逐渐成为测试工程师的一个标签。你要想拿到一个不错的薪资,必不可少的一个技能—自动化测试,自动化测试难吗&#xff1…

【2023最新】超详细图文保姆级教程:App开发新手入门(5)

上文回顾,我们已经完成了一个应用的真机调试,本章我们来了解一下如何引入YonBuilder移动开发的(原生)移动插件, 并利用移动插件完成一个简单的视频播放器。 8. 「移动插件」的使用 8.1 什么是 「移动插件」? 用通俗…

HDLBits-Modules 题解【Verilog模块例化】(中文翻译+英文原文,可顺带学习英文)

Moudule 概念介绍 到目前为止,你已经熟悉了一个模块,它是一个通过输入和输出端口与其外部交互的电路。更大、更复杂的电路是通过将较小的模块和其他连接在一起的部分(例如赋值语句和always块)组合而成的更大模块来构建的。因为模…

对决:Kubernetes vs Docker Swarm - 谁才是最优秀的容器编排方案?

✅创作者:陈书予 🎉个人主页:陈书予的个人主页 🍁陈书予的个人社区,欢迎你的加入: 陈书予的社区 文章目录一、介绍1. 什么是Kubernetes2. 什么是Docker Swarm3. 为什么需要容器编排?二、 架构比较1. Kubern…

C++【栈队列(3种)反向迭代器】

文章目录一、容器适配器二、栈(一)栈定义(二)栈使用接口(三)栈模拟实现(1) 栈模拟实现解析(2) 栈模拟实现代码(3) 栈模拟结果三、队列(一)普通队列(1)普通队列…

30天学会《Streamlit》(3)

30学会《Streamlit》是一项编码挑战,旨在帮助您开始构建Streamlit应用程序。特别是,您将能够: 为构建Streamlit应用程序设置编码环境 构建您的第一个Streamlit应用程序 了解用于Streamlit应用程序的所有很棒的输入/输出小部件 第3天 - st.…

实验三、图像复原

1. 实验目的 (1) 理解退化模型。 (2) 掌握常用的图像复原方法。 2. 实验内容 (1) 模拟噪声的行为和影响的能力是图像复原的核心。 示例 1 :使用 imnoise 添加噪声。 J imnoise(I,gaussian) 将方差为 0.01 的零均值高斯白噪声添加到灰度图像 I。 J imnoise(I,g…

最近ChatGPT封号太严重了,这里是解封攻略步骤(建议收藏)

这个周末,先是意大利暂时封杀ChatGPT,限制OpenAI处理本国用户信息。 接着,据韩国媒体报道,三星导入ChatGPT不到20天,便曝出机密资料外泄。 还没结束,又有大量网友发现ChatGPT目前停止注册,开始…

​力扣解法汇总1026. 节点与其祖先之间的最大差值

目录链接: 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目: https://github.com/September26/java-algorithms 原题链接:力扣 描述: 给定二叉树的根节点 root,找出存在于 不同 节点 A 和 B 之间的最大值…

Samba共享

关闭selinux跟防火墙 setenforce 0 systemctl stop firewalld 安装samba以及客户端 yum install samba samba-client -y 创建共享目录 mkdir -p /data/share1 mkdir -p /data/public 添加samba用户并配置权限 useradd zsuser smbpasswd -a zsuser 修改配置文件并重启服…

【Hello Linux】信号量

作者:小萌新 专栏:Linux 作者简介:大二学生 希望能和大家一起进步! 本篇博客简介:简单介绍linux中信号量的概念 信号量信号量的概念信号量的使用信号量函数二元信号量模拟互斥功能基于环形队列的生产者消费者模型空间资…

23-Ajax-axios

一、原生Ajax <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-width…

中科大ChatGPT学术镜像小白部署教程,全民都可以拥抱AI

docker…不会用…python不会用…服务器默认python版本3.6不会升级…代理也不会配置…各种命令不会用… 那么下面就是最简单办法&#xff0c;点点点即可【希望有帮助&#xff1f;】 文章目录一、体验镜像地址二、 基本配置2.1 config.py文件2.2 main.py文件三、下载项目四、项目…

【C++】哈希表:开散列和闭散列

&#x1f4dd; 个人主页 &#xff1a;超人不会飞)&#x1f4d1; 本文收录专栏&#xff1a;《C的修行之路》&#x1f4ad; 如果本文对您有帮助&#xff0c;不妨点赞、收藏、关注支持博主&#xff0c;我们一起进步&#xff0c;共同成长&#xff01; 目录前言一、基于哈希表的两个…

一条更新语句的执行流程又是怎样的呢?

当一个表上有更新的时候&#xff0c;跟这个表有关的查询缓存会失效&#xff0c;所以这条语句就会把表T上所有缓存结果都清空。这也就是我们一般不建议使用查询缓存的原因。 接下来&#xff0c;分析器会通过词法和语法解析知道这是一条更新语句。优化器决定要使用ID这个索引。然…

JAVA+SQL离散数学题库管理系统的设计与开发

题库、试卷建设是教学活动的重要组成部分&#xff0c;传统手工编制的试卷经常出现内容雷同、知识点不合理以及笔误、印刷错误等情况。为了实现离散数学题库管理的信息化而开发了离散数学题库管理系统。 该系统采用C/S 模式&#xff0c;前台采用JAVA&#xff08;JBuilder2006&am…

如何选择合适的网络自动化工具

通过网络自动化工具实现网络自动化是所有网络组织的关键。如果没有合适的网络自动化工具&#xff0c;拥有由许多设备组成的大型网络环境的组织将无法执行重要操作&#xff0c;例如按时备份配置、实时跟踪不需要的更改以及遵守行业法规。当组织未能使用正确的网络自动化工具来执…

四百左右哪款蓝牙耳机比较好?400元价位蓝牙耳机推荐

除了日常通勤以及休息前听歌以外&#xff0c;随着加班变得频繁&#xff0c;工作时也戴起了耳机&#xff0c;由于市面上的耳机种类繁多&#xff0c;因此许多人不知道从而选择&#xff0c;小编发现更多的人是追求性价比&#xff0c;所以整理了一期四百左右性能表现优异的款式给大…

量化择时——LSTM深度学习量化择时(第1部分—因子测算)

之前我们尝试使用SVM&#xff0c;将时序数据转为横截面的数据&#xff0c;使用机器学习的方法进行预测 量化择时——SVM机器学习量化择时&#xff08;第1部分—因子测算&#xff09;&#xff1a; https://blog.csdn.net/weixin_35757704/article/details/129909497 但是因为股…