从全连接层到卷积
我们之前讨论的多层感知机十分适合处理表格数据,其中行对应样本,列对应特征。 对于表格数据,我们寻找的模式可能涉及特征之间的交互,但是我们不能预先假设任何与特征交互相关的先验结构。 此时,多层感知机可能是最好的选择,然而对于高维感知数据,这种缺少结构的网络可能会变得不实用。
例如,在之前猫狗分类的例子中:假设我们有一个足够充分的照片数据集,数据集中是拥有标注的照片,每张照片具有百万级像素,这意味着网络的每次输入都有一百万个维度。 即使将隐藏层维度降低到1000,这个全连接层也将有\(10^6 \times 10^3 = 10^9\)个参数。 想要训练这个模型将不可实现,因为需要有大量的GPU、分布式优化训练的经验和超乎常人的耐心。
有些读者可能会反对这个观点,认为要求百万像素的分辨率可能不是必要的。 然而,即使分辨率减小为十万像素,使用1000个隐藏单元的隐藏层也可能不足以学习到良好的图像特征,在真实的系统中我们仍然需要数十亿个参数。 此外,拟合如此多的参数还需要收集大量的数据。 然而,如今人类和机器都能很好地区分猫和狗:这是因为图像中本就拥有丰富的结构,而这些结构可以被人类和机器学习模型使用。 卷积神经网络(convolutional neural networks,CNN)是机器学习利用自然图像中一些已知结构的创造性方法。
不变性
想象一下,假设我们想从一张图片中找到某个物体。 合理的假设是:无论哪种方法找到这个物体,都应该和物体的位置无关。 理想情况下,我们的系统应该能够利用常识:猪通常不在天上飞,飞机通常不在水里游泳。 但是,如果一只猪出现在图片顶部,我们还是应该认出它。 我们可以从儿童游戏”沃尔多在哪里”。下图中得到灵感: 在这个游戏中包含了许多充斥着活动的混乱场景,而沃尔多通常潜伏在一些不太可能的位置,读者的目标就是找出他。 尽管沃尔多的装扮很有特点,但是在眼花缭乱的场景中找到他也如大海捞针。 然而沃尔多的样子并不取决于他潜藏的地方,因此我们可以使用一个“沃尔多检测器”扫描图像。 该检测器将图像分割成多个区域,并为每个区域包含沃尔多的可能性打分。 卷积神经网络正是将空间不变性(spatial invariance)的这一概念系统化,从而基于这个模型使用较少的参数来学习有用的表示。
现在,我们将上述想法总结一下,从而帮助我们设计适合于计算机视觉的神经网络架构。
-
平移不变性(translation invariance):不管检测对象出现在图像中的哪个位置,神经网络的前面几层应该对相同的图像区域具有相似的反应,即为“平移不变性”。
-
局部性(locality):神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔较远区域的关系,这就是“局部性”原则。最终,可以聚合这些局部特征,以在整个图像级别进行预测。
让我们看看这些原则是如何转化为数学表示的。