19、Flink 的Table API 和 SQL 中的内置函数及示例(1)

Flink 系列文章

1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接

13、Flink 的table api与sql的基本概念、通用api介绍及入门示例
14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性
15、Flink 的table api与sql之流式概念-详解的介绍了动态表、时间属性配置(如何处理更新结果)、时态表、流上的join、流上的确定性以及查询配置
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及FileSystem示例(1)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Elasticsearch示例(2)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Kafka示例(3)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及JDBC示例(4)
16、Flink 的table api与sql之连接外部系统: 读写外部系统的连接器和格式以及Apache Hive示例(6)
17、Flink 之Table API: Table API 支持的操作(1)
17、Flink 之Table API: Table API 支持的操作(2)
18、Flink的SQL 支持的操作和语法
19、Flink 的Table API 和 SQL 中的内置函数及示例(1)

20、Flink SQL之SQL Client: 不用编写代码就可以尝试 Flink SQL,可以直接提交 SQL 任务到集群上

22、Flink 的table api与sql之创建表的DDL
24、Flink 的table api与sql之Catalogs(介绍、类型、java api和sql实现ddl、java api和sql操作catalog)-1
24、Flink 的table api与sql之Catalogs(java api操作数据库、表)-2
24、Flink 的table api与sql之Catalogs(java api操作视图)-3
24、Flink 的table api与sql之Catalogs(java api操作分区与函数)-4

26、Flink 的SQL之概览与入门示例
27、Flink 的SQL之SELECT (select、where、distinct、order by、limit、集合操作和去重)介绍及详细示例(1)
27、Flink 的SQL之SELECT (SQL Hints 和 Joins)介绍及详细示例(2)
27、Flink 的SQL之SELECT (窗口函数)介绍及详细示例(3)
27、Flink 的SQL之SELECT (窗口聚合)介绍及详细示例(4)
27、Flink 的SQL之SELECT (Group Aggregation分组聚合、Over Aggregation Over聚合 和 Window Join 窗口关联)介绍及详细示例(5)
27、Flink 的SQL之SELECT (Top-N、Window Top-N 窗口 Top-N 和 Window Deduplication 窗口去重)介绍及详细示例(6)
27、Flink 的SQL之SELECT (Pattern Recognition 模式检测)介绍及详细示例(7)
28、Flink 的SQL之DROP 、ALTER 、INSERT 、ANALYZE 语句
29、Flink SQL之DESCRIBE、EXPLAIN、USE、SHOW、LOAD、UNLOAD、SET、RESET、JAR、JOB Statements、UPDATE、DELETE(1)
29、Flink SQL之DESCRIBE、EXPLAIN、USE、SHOW、LOAD、UNLOAD、SET、RESET、JAR、JOB Statements、UPDATE、DELETE(2)
30、Flink SQL之SQL 客户端(通过kafka和filesystem的例子介绍了配置文件使用-表、视图等)
32、Flink table api和SQL 之用户自定义 Sources & Sinks实现及详细示例
41、Flink之Hive 方言介绍及详细示例
42、Flink 的table api与sql之Hive Catalog
43、Flink之Hive 读写及详细验证示例
44、Flink之module模块介绍及使用示例和Flink SQL使用hive内置函数及自定义函数详细示例–网上有些说法好像是错误的


文章目录

  • Flink 系列文章
  • 一、函数分类
    • 1、分类标准及类别
    • 2、函数引用
      • 1)、精确函数引用
      • 2)、模糊函数引用
    • 3、函数解析顺序
      • 1)、精确函数引用
      • 2)、模糊函数引用
  • 二、系统(内置)函数
    • 1、标量函数
      • 1)、比较函数
      • 2)、逻辑函数
      • 3)、算术函数
      • 4)、字符串函数
      • 5)、时间函数
      • 6)、条件函数
      • 7)、类型转换函数
      • 8)、集合函数
      • 9)、JSON Functions
        • 1、IS JSON
        • 2、JSON_EXISTS
        • 3、JSON_STRING
        • 4、JSON_VALUE
        • 5、JSON_QUERY
        • 6、JSON_OBJECT
        • 7、JSON_ARRAY
        • 8、JSON_ARRAYAGG
        • 10、JSON_OBJECTAGG
      • 10)、值构建函数
      • 11)、值获取函数
      • 12)、分组函数
      • 13)、哈希函数
    • 2、聚合函数
    • 3、时间间隔单位和时间点单位标识符
    • 4、列函数


本文介绍了flink的函数分类、内置函数的说明及示例,特别是针对json function函数每个均以可运行的示例进行说明。
本文依赖flink集群能正常使用。
本文分为2个部分,即函数分类以及内置函数。
本文的示例均在Flink 1.17版本中运行。

一、函数分类

Flink 允许用户在 Table API 和 SQL 中使用函数进行数据的转换。
Flink 中的函数有两个划分标准。

1、分类标准及类别

一个划分标准是:系统(内置)函数和 Catalog 函数。系统函数没有名称空间,只能通过其名称来进行引用。 Catalog 函数属于 Catalog 和数据库,因此它们拥有 Catalog 和数据库命名空间。 用户可以通过全/部分限定名(catalog.db.func 或 db.func)或者函数名 来对 Catalog 函数进行引用。

另一个划分标准是:临时函数和持久化函数。 临时函数始终由用户创建,它容易改变并且仅在会话的生命周期内有效。 持久化函数不是由系统提供,就是存储在 Catalog 中,它在会话的整个生命周期内都有效。

这两个划分标准给 Flink 用户提供了 4 种函数:

  • 临时性系统函数
  • 系统函数
  • 临时性 Catalog 函数
  • Catalog 函数

系统函数始终优先于 Catalog 函数解析,临时函数始终优先于持久化函数解析, 函数解析优先级如下所述。

2、函数引用

用户在 Flink 中可以通过精确、模糊两种引用方式引用函数。

1)、精确函数引用

精确函数引用允许用户跨 Catalog,跨数据库调用 Catalog 函数。
例如:select mycatalog.mydb.myfunc(x) from mytable 和 select mydb.myfunc(x) from mytable。

仅 Flink 1.10 以上版本支持。

2)、模糊函数引用

在模糊函数引用中,用户只需在 SQL 查询中指定函数名,例如: select myfunc(x) from mytable。

3、函数解析顺序

当函数名相同,函数类型不同时,函数解析顺序才有意义。
例如:当有三个都名为 “myfunc” 的临时性 Catalog 函数,Catalog 函数,和系统函数时, 如果没有命名冲突,三个函数将会被解析为一个函数。

1)、精确函数引用

由于系统函数没有命名空间,Flink 中的精确函数引用必须 指向临时性 Catalog 函数或 Catalog 函数。

解析顺序如下:

  1. 临时性 catalog 函数
  2. Catalog 函数

2)、模糊函数引用

解析顺序如下:

  1. 临时性系统函数
  2. 系统函数
  3. 临时性 Catalog 函数, 在会话的当前 Catalog 和当前数据库中
  4. Catalog 函数, 在会话的当前 Catalog 和当前数据库中

二、系统(内置)函数

Flink Table API & SQL 为用户提供了一组内置的数据转换函数。

1、标量函数

标量函数将零、一个或多个值作为输入并返回单个值作为结果。

1)、比较函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2)、逻辑函数

在这里插入图片描述

3)、算术函数

在这里插入图片描述
在这里插入图片描述

4)、字符串函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5)、时间函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6)、条件函数

在这里插入图片描述

7)、类型转换函数

在这里插入图片描述

8)、集合函数

在这里插入图片描述

9)、JSON Functions

JSON 函数使用 SQL 标准的 ISO/IEC TR 19075-6 中所述的 JSON 路径表达式(JSON path expressions )。它们的语法受到 ECMAScript 的启发并采用了 ECMAScript 的许多功能,但既不是它的子集也不是它的超集。

路径表达式有两种风格,宽松和严格( lax and strict.)。省略时,它默认为严格模式。
严格模式旨在从架构角度检查数据,每当数据不符合路径表达式时,就会引发错误。但是,像 JSON_VALUE 这样的函数允许在遇到错误时定义回退行为。
宽松模式更宽容,并将错误转换为空序列。

特殊字符 $ 表示 JSON 路径中的根节点。路径可以访问属性 ( . a )、数组元素( .a)、数组元素 ( .a)、数组元素(.a[0].b) 或分支数组中的所有元素 ($.a[*].b)。

已知限制:
截至Flink 1.17版本并非正确支持宽松模式的所有功能。这是一个上游错误 (CALCITE-4717)。不保证非标准行为。

1、IS JSON

确定给定字符串是否为有效的 JSON。
指定可选的类型参数会限制允许哪种类型的 JSON 对象。如果字符串是有效的 JSON,但不是该类型,则返回 false。默认值为 VALUE。

  • SQL语法
IS JSON [ { VALUE | SCALAR | ARRAY | OBJECT } ]
  • table api语法
STRING.isJson([JsonType type])
  • 示例

-- TRUE
Flink SQL> select '1' IS JSON;
+----+--------+
| op | EXPR$0 |
+----+--------+
| +I |   TRUE |
+----+--------+

Flink SQL> select '[]' IS JSON;
+----+--------+
| op | EXPR$0 |
+----+--------+
| +I |   TRUE |
+----+--------+
-- The following statements return TRUE.
SELECT '1' IS JSON;
SELECT '[]' IS JSON;
SELECT '{}' IS JSON;
SELECT '"abc"' IS JSON;
SELECT '1' IS JSON SCALAR;
SELECT '{}' IS JSON OBJECT;

-- The following statements return FALSE.
SELECT 'abc' IS JSON;
SELECT '1' IS JSON ARRAY;
SELECT '1' IS JSON OBJECT;
SELECT '{}' IS JSON SCALAR;
SELECT '{}' IS JSON ARRAY;

# 以下示例一样,不再赘述

'1' IS JSON
'[]' IS JSON
'{}' IS JSON

-- TRUE
'"abc"' IS JSON
-- FALSE
'abc' IS JSON
NULL IS JSON

-- TRUE
'1' IS JSON SCALAR
-- FALSE
'1' IS JSON ARRAY
-- FALSE
'1' IS JSON OBJECT

-- FALSE
'{}' IS JSON SCALAR
-- FALSE
'{}' IS JSON ARRAY
-- TRUE
'{}' IS JSON OBJECT
2、JSON_EXISTS

确定 JSON 字符串是否满足给定的路径搜索条件。
如果省略错误行为,则假定 FALSE ON ERROR 为默认值。

  • SQL语法
JSON_EXISTS(jsonValue, path [ { TRUE | FALSE | UNKNOWN | ERROR } ON ERROR ])
  • table api语法
STRING.jsonExists(STRING path [, JsonExistsOnError onError])
  • 示例
Flink SQL> SELECT JSON_EXISTS('{"a": true}', 'strict $.b' FALSE ON ERROR);
+----+--------+
| op | EXPR$0 |
+----+--------+
| +I |  FALSE |
+----+--------+

-- The following statements return TRUE.
SELECT JSON_EXISTS('{"a": true}', '$.a');
SELECT JSON_EXISTS('{"a": [{ "b": 1 }]}', '$.a[0].b');
SELECT JSON_EXISTS('{"a": true}', 'strict $.b' TRUE ON ERROR);
-- The following statements return FALSE.
SELECT JSON_EXISTS('{"a": true}', '$.b');
SELECT JSON_EXISTS('{"a": true}', 'strict $.b' FALSE ON ERROR);

-- TRUE
SELECT JSON_EXISTS('{"a": true}', '$.a');
-- FALSE
SELECT JSON_EXISTS('{"a": true}', '$.b');
-- TRUE
SELECT JSON_EXISTS('{"a": [{ "b": 1 }]}',
  '$.a[0].b');

-- TRUE
SELECT JSON_EXISTS('{"a": true}',
  'strict $.b' TRUE ON ERROR);
-- FALSE
SELECT JSON_EXISTS('{"a": true}',
  'strict $.b' FALSE ON ERROR);
3、JSON_STRING

将值序列化为 JSON。
此函数返回包含序列化值的 JSON 字符串。如果值为 NULL,则该函数返回 NULL。

  • SQL语法
JSON_STRING(value)
  • table api语法
jsonString(value)
  • 示例
Flink SQL> SELECT JSON_STRING(1);
+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I |                              1 |
+----+--------------------------------+

-- returns NULL
SELECT JSON_STRING(CAST(NULL AS INT));

-- returns '1'
SELECT JSON_STRING(1);

-- returns 'true'
SELECT JSON_STRING(TRUE);

-- returns '"Hello, World!"'
JSON_STRING('Hello, World!');

-- returns '[1,2]'
JSON_STRING(ARRAY[1, 2])

-- NULL
JSON_STRING(CAST(NULL AS INT))

-- '1'
JSON_STRING(1)
-- 'true'
JSON_STRING(TRUE)
-- '"Hello, World!"'
JSON_STRING('Hello, World!')
-- '[1,2]'
JSON_STRING(ARRAY[1, 2])
4、JSON_VALUE

从 JSON 字符串中提取标量。
此方法在 JSON 字符串中搜索给定的路径表达式,如果该路径的值为标量,则返回该值。不能返回非标量值。
默认情况下,该值以 STRING 形式返回。使用 returningType 可以选择不同的类型,并支持以下类型:

  • VARCHAR / STRING
  • BOOLEAN
  • INTEGER
  • DOUBLE

对于空路径表达式或错误,可以将行为定义为返回 null、引发错误或返回定义的默认值。
省略时,默认值分别为 NULL ON EMPTY 或 NULL ON ERROR。
默认值可以是文本或表达式。如果默认值本身引发错误,则它将下降到 ON EMPTY 的错误行为,并引发 ON ERROR 的错误。

对于包含空格等特殊字符的路径,可以使用 [‘property’] 或 [“property”] 选择父对象中的指定属性。

请务必在属性名称两边加上单引号或双引号。

在 SQL 中使用 JSON_VALUE 时,路径是一个字符参数,该参数已经是单引号,因此您必须对属性名称周围的单引号进行转义,
例如 JSON_VALUE(‘{“a b”: “true”}’, ‘$.[’‘a b’‘]’)。

  • SQL语法
JSON_VALUE(jsonValue, path [RETURNING <dataType>] [ { NULL | ERROR | DEFAULT <defaultExpr> } ON EMPTY ] [ { NULL | ERROR | DEFAULT <defaultExpr> } ON ERROR ])
  • table api语法
STRING.jsonValue(STRING path [, returnType, onEmpty, defaultOnEmpty, onError, defaultOnError])
  • 示例
Flink SQL> SELECT JSON_VALUE('{"a": true}', '$.a');
+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I |                           true |
+----+--------------------------------+
Flink SQL> SELECT JSON_VALUE('{"contains blank": "right"}', 'strict $.[''contains blank'']' NULL ON EMPTY DEFAULT 'wrong' ON ERROR);
+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I |                          right |
+----+--------------------------------+

-- returns "true"
SELECT JSON_VALUE('{"a": true}', '$.a');

-- returns TRUE
SELECT JSON_VALUE('{"a": true}', '$.a' RETURNING BOOLEAN);

-- returns "false"
SELECT JSON_VALUE('{"a": true}', 'lax $.b' DEFAULT FALSE ON EMPTY);

-- returns "false"
SELECT JSON_VALUE('{"a": true}', 'strict $.b' DEFAULT FALSE ON ERROR);

-- returns 0.998D
SELECT JSON_VALUE('{"a.b": [0.998,0.996]}','$.["a.b"][0]' RETURNING DOUBLE);

-- returns "right"
SELECT JSON_VALUE('{"contains blank": "right"}', 'strict $.[''contains blank'']' NULL ON EMPTY DEFAULT 'wrong' ON ERROR);

5、JSON_QUERY

目前不支持 RETURNING 子句。
wrappingBehavior 确定是否应将提取的值包装到数组中,以及是无条件地包装,还是仅在值本身还不是数组时才这样做。
onEmpty 和 onError 分别确定路径表达式为空或引发错误时的行为。
默认情况下,在这两种情况下都返回 null。其他选择是使用空数组、空对象或引发错误。

  • SQL语法
JSON_QUERY(jsonValue, path [ { WITHOUT | WITH CONDITIONAL | WITH UNCONDITIONAL } [ ARRAY ] WRAPPER ] [ { NULL | EMPTY ARRAY | EMPTY OBJECT | ERROR } ON EMPTY ] [ { NULL | EMPTY ARRAY | EMPTY OBJECT | ERROR } ON ERROR ])
  • table api语法
STRING.jsonQuery(path [, JsonQueryWrapper [, JsonQueryOnEmptyOrError, JsonQueryOnEmptyOrError ] ])
  • 示例
Flink SQL> SELECT JSON_QUERY('{ "a": { "b": 1 } }', '$.a');
+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I |                        {"b":1} |
+----+--------------------------------+
Flink SQL> SELECT JSON_QUERY('{}', 'lax $.invalid' EMPTY OBJECT ON EMPTY);
+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I |                             {} |
+----+--------------------------------+
-- returns '{ "b": 1 }'
SELECT JSON_QUERY('{ "a": { "b": 1 } }', '$.a');

-- returns '[1, 2]'
SELECT JSON_QUERY('[1, 2]', '$');

-- returns NULL
SELECT JSON_QUERY(CAST(NULL AS STRING), '$');

-- returns '["c1","c2"]'
SELECT JSON_QUERY('{"a":[{"c":"c1"},{"c":"c2"}]}', 'lax $.a[*].c');

-- Wrap the result into an array.
-- returns '[{}]'
SELECT JSON_QUERY('{}', '$' WITH CONDITIONAL ARRAY WRAPPER);

-- returns '[1, 2]'
SELECT JSON_QUERY('[1, 2]', '$' WITH CONDITIONAL ARRAY WRAPPER);

-- returns '[[1, 2]]'
SELECT JSON_QUERY('[1, 2]', '$' WITH UNCONDITIONAL ARRAY WRAPPER);

-- Scalars must be wrapped to be returned.
-- returns NULL
SELECT JSON_QUERY(1, '$');

-- returns '[1]'
SELECT JSON_QUERY(1, '$' WITH CONDITIONAL ARRAY WRAPPER);

-- Behavior if the path expression is empty.
-- returns '{}'
SELECT JSON_QUERY('{}', 'lax $.invalid' EMPTY OBJECT ON EMPTY);

-- Behavior if the path expression has an error.
-- returns '[]'
SELECT JSON_QUERY('{}', 'strict $.invalid' EMPTY ARRAY ON ERROR);

-- '{ "b": 1 }'
JSON_QUERY('{ "a": { "b": 1 } }', '$.a')
-- '[1, 2]'
JSON_QUERY('[1, 2]', '$')
-- NULL
JSON_QUERY(CAST(NULL AS STRING), '$')
-- '["c1","c2"]'
JSON_QUERY('{"a":[{"c":"c1"},{"c":"c2"}]}',
    'lax $.a[*].c')

-- Wrap result into an array
-- '[{}]'
JSON_QUERY('{}', '$' WITH CONDITIONAL ARRAY WRAPPER)
-- '[1, 2]'
JSON_QUERY('[1, 2]', '$' WITH CONDITIONAL ARRAY WRAPPER)
-- '[[1, 2]]'
JSON_QUERY('[1, 2]', '$' WITH UNCONDITIONAL ARRAY WRAPPER)

-- Scalars must be wrapped to be returned
-- NULL
JSON_QUERY(1, '$')
-- '[1]'
JSON_QUERY(1, '$' WITH CONDITIONAL ARRAY WRAPPER)

-- Behavior if path expression is empty / there is an error
-- '{}'
JSON_QUERY('{}', 'lax $.invalid' EMPTY OBJECT ON EMPTY)
-- '[]'
JSON_QUERY('{}', 'strict $.invalid' EMPTY ARRAY ON ERROR)
6、JSON_OBJECT

从键值对列表生成 JSON 对象字符串。

请注意,键必须是非 NULL 字符串文本,而值可以是任意表达式。

此函数返回一个 JSON 字符串。ON NULL 行为定义如何处理 NULL 值。如果省略,则默认假定 NULL ON NULL。
从另一个 JSON 构造函数调用(JSON_OBJECT、JSON_ARRAY)创建的值是直接插入的,而不是作为字符串插入的。这允许构建嵌套的 JSON 结构。

  • SQL语法
JSON_OBJECT([[KEY] key VALUE value]* [ { NULL | ABSENT } ON NULL ])
  • table api语法
jsonObject(JsonOnNull, keyValues...)
  • 示例
Flink SQL> SELECT JSON_OBJECT(
>   KEY 'K1'
>   VALUE JSON_OBJECT(
>     KEY 'K2'
>     VALUE 'V'
>   )
> );
+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I |              {"K1":{"K2":"V"}} |
+----+--------------------------------+

Flink SQL> SELECT JSON_OBJECT(KEY 'K1' VALUE CAST(NULL AS STRING) ABSENT ON NULL);
+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I |                             {} |
+----+--------------------------------+

-- returns '{}'
SELECT JSON_OBJECT();

-- returns '{"K1":"V1","K2":"V2"}'
SELECT JSON_OBJECT('K1' VALUE 'V1', 'K2' VALUE 'V2');

-- Use an expression as a value.
SELECT JSON_OBJECT('orderNo' VALUE orders.orderId);

-- ON NULL
-- '{"K1":null}'
SELECT JSON_OBJECT(KEY 'K1' VALUE CAST(NULL AS STRING) NULL ON NULL);

-- ON NULL
-- '{}'
SELECT JSON_OBJECT(KEY 'K1' VALUE CAST(NULL AS STRING) ABSENT ON NULL);

-- returns '{"K1":{"K2":"V"}}'
SELECT JSON_OBJECT(
  KEY 'K1'
  VALUE JSON_OBJECT(
    KEY 'K2'
    VALUE 'V'
  )
);

-- '{}'
JSON_OBJECT()

-- '{"K1":"V1","K2":"V2"}'
JSON_OBJECT('K1' VALUE 'V1', 'K2' VALUE 'V2')

-- Expressions as values
JSON_OBJECT('orderNo' VALUE orders.orderId)

-- ON NULL
JSON_OBJECT(KEY 'K1' VALUE CAST(NULL AS STRING) NULL ON NULL)   -- '{"K1":null}'
JSON_OBJECT(KEY 'K1' VALUE CAST(NULL AS STRING) ABSENT ON NULL) -- '{}'

-- '{"K1":{"K2":"V"}}'
JSON_OBJECT(
  KEY 'K1'
  VALUE JSON_OBJECT(
    KEY 'K2'
    VALUE 'V'
  )
)
7、JSON_ARRAY

从值列表生成 JSON 数组字符串。
此函数返回一个 JSON 字符串。这些值可以是任意表达式。ON NULL 行为定义如何处理 NULL 值。如果省略,则默认假定 ABSENT ON NULL。
从另一个 JSON 构造函数调用(JSON_OBJECT、JSON_ARRAY)创建的元素是直接插入的,而不是作为字符串插入的。这允许构建嵌套的 JSON 结构。

  • SQL语法
JSON_ARRAY([value]* [ { NULL | ABSENT } ON NULL ])
  • table api语法
jsonArray(JsonOnNull, values...)
  • 示例
Flink SQL> 
> SELECT JSON_ARRAY(1, '2');
+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I |                        [1,"2"] |
+----+--------------------------------+
Received a total of 1 row

Flink SQL> SELECT JSON_ARRAY(CAST(NULL AS STRING) ABSENT ON NULL);
+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I |                             [] |
+----+--------------------------------+

-- returns '[]'
SELECT JSON_ARRAY();

-- returns '[1,"2"]'
SELECT JSON_ARRAY(1, '2');

-- Use an expression as a value.
SELECT JSON_ARRAY(orders.orderId);

-- ON NULL
-- returns '[null]'
SELECT JSON_ARRAY(CAST(NULL AS STRING) NULL ON NULL);

-- ON NULL
-- returns '[]'
SELECT JSON_ARRAY(CAST(NULL AS STRING) ABSENT ON NULL);

-- returns '[[1]]'
SELECT JSON_ARRAY(JSON_ARRAY(1));

-- '[]'
JSON_ARRAY()
-- '[1,"2"]'
JSON_ARRAY(1, '2')

-- Expressions as values
JSON_ARRAY(orders.orderId)

-- ON NULL
JSON_ARRAY(CAST(NULL AS STRING) NULL ON NULL) -- '[null]'
JSON_ARRAY(CAST(NULL AS STRING) ABSENT ON NULL) -- '[]'

-- '[[1]]'
JSON_ARRAY(JSON_ARRAY(1))

8、JSON_ARRAYAGG

将明细聚合到 JSON 数组字符串中。
JSON_ARRAYAGG 函数通过将指定的项聚合到数组中来创建 JSON 对象字符串。

item 表达式可以是任意的,包括其他 JSON 函数。

如果值为 NULL,则 ON NULL 行为定义要执行的操作。如果省略,则 ABSENT ON NULL 为默认值。

OVER 窗口、无限会话窗口或 HOP 窗口不支持JSON_ARRAYAGG函数。

  • SQL语法
JSON_ARRAYAGG(items [ { NULL | ABSENT } ON NULL ])
  • table api语法
在这里插入代码片
  • 示例
Flink SQL> CREATE TABLE source_table (
>  userId INT,
>  age INT,
>  balance DOUBLE,
>  userName STRING,
>  t_insert_time AS localtimestamp,
>  WATERMARK FOR t_insert_time AS t_insert_time
> ) WITH (
>  'connector' = 'datagen',
>  'rows-per-second'='5',
>  'fields.userId.kind'='sequence',
>  'fields.userId.start'='1',
>  'fields.userId.end'='10',
> 
>  'fields.balance.kind'='random',
>  'fields.balance.min'='1',
>  'fields.balance.max'='100',
> 
>  'fields.age.min'='1',
>  'fields.age.max'='1000',
> 
>  'fields.userName.length'='10'
> );
[INFO] Execute statement succeed.

Flink SQL> select * from source_table;
+----+-------------+-------------+--------------------------------+--------------------------------+-------------------------+
| op |      userId |         age |                        balance |                       userName |           t_insert_time |
+----+-------------+-------------+--------------------------------+--------------------------------+-------------------------+
| +I |           1 |         555 |              90.45012880441223 |                     7e2b6c7beb | 2023-11-06 17:29:05.273 |
| +I |           2 |         209 |              32.07201650494765 |                     f652baac94 | 2023-11-06 17:29:05.274 |
| +I |           3 |         278 |             24.299962537076734 |                     11b4353416 | 2023-11-06 17:29:05.274 |
| +I |           4 |         433 |             58.634356546049574 |                     21d5d09603 | 2023-11-06 17:29:05.274 |
| +I |           5 |          55 |              16.20617629075601 |                     d626f31213 | 2023-11-06 17:29:05.274 |
| +I |           6 |         442 |              98.87803427244727 |                     0305c21dc5 | 2023-11-06 17:29:06.267 |
| +I |           7 |          19 |              96.11095443982174 |                     ea873b2df2 | 2023-11-06 17:29:06.268 |
| +I |           8 |         806 |               36.5775262369553 |                     f8df556b22 | 2023-11-06 17:29:06.268 |
| +I |           9 |         919 |              69.47517602162831 |                     85074390f3 | 2023-11-06 17:29:06.268 |
| +I |          10 |          46 |             47.519467818569815 |                     662990446f | 2023-11-06 17:29:06.268 |
+----+-------------+-------------+--------------------------------+--------------------------------+-------------------------+
Received a total of 10 rows

Flink SQL> SELECT
> JSON_ARRAYAGG(userName)
> FROM source_table;
+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I |                 ["ee2e4edb32"] |
| -U |                 ["ee2e4edb32"] |
| +U |    ["ee2e4edb32","66e13f3f77"] |
| -U |    ["ee2e4edb32","66e13f3f77"] |
| +U | ["ee2e4edb32","66e13f3f77",... |
| -U | ["ee2e4edb32","66e13f3f77",... |
| +U | ["ee2e4edb32","66e13f3f77",... |
| -U | ["ee2e4edb32","66e13f3f77",... |
| +U | ["ee2e4edb32","66e13f3f77",... |
| -U | ["ee2e4edb32","66e13f3f77",... |
| +U | ["ee2e4edb32","66e13f3f77",... |
| -U | ["ee2e4edb32","66e13f3f77",... |
| +U | ["ee2e4edb32","66e13f3f77",... |
| -U | ["ee2e4edb32","66e13f3f77",... |
| +U | ["ee2e4edb32","66e13f3f77",... |
| -U | ["ee2e4edb32","66e13f3f77",... |
| +U | ["ee2e4edb32","66e13f3f77",... |
| -U | ["ee2e4edb32","66e13f3f77",... |
| +U | ["ee2e4edb32","66e13f3f77",... |
+----+--------------------------------+
Received a total of 19 rows

Flink SQL> SELECT
> JSON_ARRAYAGG(userId)
> FROM source_table;
+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I |                            [1] |
| -U |                            [1] |
| +U |                          [1,2] |
| -U |                          [1,2] |
| +U |                        [1,2,3] |
| -U |                        [1,2,3] |
| +U |                      [1,2,3,4] |
| -U |                      [1,2,3,4] |
| +U |                    [1,2,3,4,5] |
| -U |                    [1,2,3,4,5] |
| +U |                  [1,2,3,4,5,6] |
| -U |                  [1,2,3,4,5,6] |
| +U |                [1,2,3,4,5,6,7] |
| -U |                [1,2,3,4,5,6,7] |
| +U |              [1,2,3,4,5,6,7,8] |
| -U |              [1,2,3,4,5,6,7,8] |
| +U |            [1,2,3,4,5,6,7,8,9] |
| -U |            [1,2,3,4,5,6,7,8,9] |
| +U |         [1,2,3,4,5,6,7,8,9,10] |
+----+--------------------------------+
Received a total of 19 rows

10、JSON_OBJECTAGG

将key-value表达式聚合到 JSON 字符串中。

JSON_OBJECTAGG 函数通过将key-value表达式聚合到单个 JSON 对象中来创建 JSON 对象字符串。

key表达式必须返回不可为 null 的字符串。value表达式可以是任意的,包括其他 JSON 函数。

密钥必须是唯一的。如果一个key多次出现,则会引发错误。

如果value为 NULL,则 ON NULL 行为定义要执行的操作。如果省略,则 NULL ON NULL 为默认值。

OVER 窗口中不支持 JSON_OBJECTAGG 函数。

  • SQL语法
JSON_OBJECTAGG([KEY] key VALUE value [ { NULL | ABSENT } ON NULL ])
  • table api语法
在这里插入代码片
  • 示例

Flink SQL> select 
> JSON_OBJECTAGG(userName VALUE 'f652baac94' )
> FROM source_table;
+----+--------------------------------+
| op |                         EXPR$0 |
+----+--------------------------------+
| +I |    {"0c3ceeca6f":"f652baac94"} |
| -U |    {"0c3ceeca6f":"f652baac94"} |
| +U | {"0c3ceeca6f":"f652baac94",... |
| -U | {"0c3ceeca6f":"f652baac94",... |
| +U | {"0c3ceeca6f":"f652baac94",... |
| -U | {"0c3ceeca6f":"f652baac94",... |
| +U | {"0c3ceeca6f":"f652baac94",... |
| -U | {"0c3ceeca6f":"f652baac94",... |
| +U | {"0c3ceeca6f":"f652baac94",... |
| -U | {"0c3ceeca6f":"f652baac94",... |
| +U | {"0c3ceeca6f":"f652baac94",... |
| -U | {"0c3ceeca6f":"f652baac94",... |
| +U | {"0c3ceeca6f":"f652baac94",... |
| -U | {"0c3ceeca6f":"f652baac94",... |
| +U | {"0c3ceeca6f":"f652baac94",... |
| -U | {"0c3ceeca6f":"f652baac94",... |
| +U | {"0c3ceeca6f":"f652baac94",... |
| -U | {"0c3ceeca6f":"f652baac94",... |
| +U | {"0c3ceeca6f":"f652baac94",... |
+----+--------------------------------+


10)、值构建函数

在这里插入图片描述

11)、值获取函数

在这里插入图片描述

12)、分组函数

在这里插入图片描述

13)、哈希函数

在这里插入图片描述

2、聚合函数

聚合函数将所有的行作为输入,并返回单个聚合值作为结果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、时间间隔单位和时间点单位标识符

下表列出了时间间隔单位和时间点单位标识符。

对于 Table API,请使用 _ 代替空格(例如 DAY_TO_HOUR)

在这里插入图片描述
在这里插入图片描述

4、列函数

列函数用于选择或丢弃表的列。

列函数仅在 Table API 中使用。

在这里插入图片描述
详细语法如下:

//列函数:
    withColumns(columnExprs)
    withoutColumns(columnExprs)

//多列表达式:
    columnExpr [, columnExpr]*

//单列表达式:
    columnRef | columnIndex to columnIndex | columnName to columnName

//列引用:
    columnName(The field name that exists in the table) | columnIndex(a positive integer starting from 1)

列函数的用法如下表所示(假设我们有一个包含 5 列的表:(a: Int, b: Long, c: String, d:String, e: String)):
在这里插入图片描述
列函数可用于所有需要列字段的地方,例如 select、groupBy、orderBy、UDFs 等函数,例如:

table
    .groupBy(withColumns(range(1, 3)))
    .select(withColumns(range("a", "b")), myUDAgg(myUDF(withColumns(range(5, 20)))));

以上,介绍了flink的函数分类、内置函数的说明及示例,特别是针对json function函数每个均以可运行的示例进行说明。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/118281.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Keep-Alive中通过component多次加载同样的动态组件无法保持状态的解决办法

Keep-Alive中通过component多次加载同样的动态组件无法保持状态的解决办法 Keep-Alive中通过component多次加载同样的动态组件无法保持状态的解决办法 | 软件开发服务商 (yidianhulian.com)https://yidianhulian.com/?p12263 问题描述 项目功能上有需要动态添加组件的需求&…

H5ke9 异步处理

目录 .then()的使用详解 案例一:触小图标变大,移走变回 案例三:页面提交文件,我服务器端接收 上次fetvh就一个参数url,,就是get请求 fetch还可以第二个参数对象,可以指定method:改为POST 请求头header :发送txt,servlet,json给客户端,,异步请求图片 1都是客户端传到服务器端…

高数笔记06:无穷级数

图源&#xff1a;文心一言 时间比较紧张&#xff0c;仅导图~~&#x1f95d;&#x1f95d; 第1版&#xff1a;查资料、画导图~&#x1f9e9;&#x1f9e9; 参考资料&#xff1a;《高等数学 基础篇》武忠祥 &#x1f433;目录 &#x1f433;常数项级数 &#x1f40b;概要 &…

Python基础(第五期): python数据容器(序列) 列表 集合 元素 字符串 字典 序列遍历操作

python基础专栏 python基础&#xff08;第五期&#xff09; 文章目录 python基础&#xff08;第五期&#xff09;数据容器一、列表1、列表的定义2、列表的下标索引 3、列表的(添加)方法3.1 列表的查询方法3.2 修改特定下标索引的值3.3 列表指定位置插入元素3.3 列表指定元素的追…

Git同时配置Gitee和GitHub

Git同时配置Gitee和GitHub 一、删除原先ssh密钥二、生成密钥 这里的同时配置是针对于之前配置过单个gitee或者github而言的&#xff0c;如果需要看git从安装开始的配置&#xff0c;则可以看这一篇文章 git安装配置教程 一、删除原先ssh密钥 在C盘下用户/用户名/.ssh文件下找到…

Docker Swarm实现容器的复制均衡及动态管理:详细过程版

Swarm简介 Swarm是一套较为简单的工具&#xff0c;用以管理Docker集群&#xff0c;使得Docker集群暴露给用户时相当于一个虚拟的整体。Swarm使用标准的Docker API接口作为其前端访问入口&#xff0c;换言之&#xff0c;各种形式的Docker Client(dockerclient in go, docker_py…

Ps:PSDT 模板文件

自 Photoshop CC 2015.5 版以后&#xff0c;Ps 中新增了一种文件格式&#xff1a;.PSDT。 说明&#xff1a; PSD、PDD、PSDT 都是 Ps 的专用文件格式&#xff0c;需要继续在 Ps 中进行编辑的文件可存为此类格式。 PSD Photoshop document Photoshop 默认文档格式&#xff0c;支…

【ArcGIS模型构建器】06:ArcGIS中DOM批量分幅教程

ArcGIS中利用模型构建器实现DOM批量分幅裁剪。 文章目录 1. 加载数据2. 批量分幅1. 加载数据 批量分幅通常是基于数字正射影像来实现。 数字正射影像(DOM.tif)CASS标准图幅(shp) 2. 批量分幅 单个图幅可以通过裁剪或者按掩膜提取工具来进行,批量分幅采用模型构建器进行。…

django REST框架- Django-ninja

Django 是我学习的最早的web框架&#xff0c;大概在2014年&#xff0c;当时选他原因也很简单就是网上资料比较丰富&#xff0c;自然是遇到问题更容易找答案&#xff0c;直到 2018年真正开始拿django做项目&#xff0c;才对他有了更全面的了解。他是一个入门有门槛&#xff0c;学…

【t5 pytorch版源码学习】t5-pegasus-pytorch源码学习

0. 项目来源 中文生成式预训练模型&#xff0c;以mT5为基础架构和初始权重&#xff0c;通过类似PEGASUS的方式进行预训练。 bert4keras版&#xff1a;t5-pegasus pytorch版&#xff1a;t5-pegasus-pytorch 本次主要学习pytorch版的代码解读。 项目结构&#xff1a; train…

Python详细教程,如何使用Python进行数据可视化?

文章目录 前言一、导入必要的库二、加载数据三、创建基本图表四、添加更多细节五、使用Seaborn库创建更复杂的图表关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项目源码合集①Python工具包②Python实战案例③…

卡尔曼家族从零解剖-(04)贝叶斯滤波→细节讨论,逻辑梳理,批量优化

讲解关于slam一系列文章汇总链接:史上最全slam从零开始&#xff0c;针对于本栏目讲解的 卡尔曼家族从零解剖 链接 :卡尔曼家族从零解剖-(00)目录最新无死角讲解&#xff1a;https://blog.csdn.net/weixin_43013761/article/details/133846882 文末正下方中心提供了本人 联系…

【C++】类与对象 上

前言 感觉自己的基础还是不够好 最近打算在学新知识的同时 把之前的一些知识点再复习一下 引入 在C语言的学习中 我们学习过结构体 我们用结构体来描述复杂的对象 在结构体中只能定义变量 而在C的结构体中 我们可以在C中 定义函数 下面给出一个简单的例子 创建一个结构体 并…

ZZ038 物联网应用与服务赛题第I套

2023年全国职业院校技能大赛 中职组 物联网应用与服务 任 务 书 &#xff08;I卷&#xff09; 赛位号&#xff1a;______________ 竞赛须知 一、注意事项 1.检查硬件设备、电脑设备是否正常。检查竞赛所需的各项设备、软件和竞赛材料等; 2.竞赛任务中所使用的各类软件工…

解决美颜SDK集成:技术最佳实践和故障排除

美颜SDK已成为许多应用的核心功能&#xff0c;因为它可以增强用户体验&#xff0c;提高图像质量&#xff0c;吸引更多的用户。然而&#xff0c;集成美颜SDK并不总是一帆风顺。本文将为您介绍一些关键的技术最佳实践&#xff0c;以及如何排除集成过程中可能遇到的故障。 一、技…

YoloV8目标检测与实例分割——目标检测onnx模型推理

一、模型转换 1.onnxruntime ONNX Runtime&#xff08;ONNX Runtime或ORT&#xff09;是一个开源的高性能推理引擎&#xff0c;用于部署和运行机器学习模型。它的设计目标是优化执行使用Open Neural Network Exchange&#xff08;ONNX&#xff09;格式定义的模型&#xff0c;…

MapReduce WordCount程序实践(IDEA版)

环境 Linux&#xff1a;Hadoop2.x Windows&#xff1a;jdk1.8、Maven3、IDEA2021 步骤 编程分析 编程分析包括&#xff1a; 1.数据过程分析&#xff1a;数据从输入到输出的过程分析。 2.数据类型分析&#xff1a;Map的输入输出类型&#xff0c;Reduce的输入输出类型&#x…

【服务器使用】vscode winscp进行服务器容器连接(含修改初始密码)

1&#xff1a;获取docker的登陆信息 例如节点&#xff08;host&#xff09;、端口&#xff08;port&#xff09;、密码&#xff08;passwd&#xff09;等信息&#xff0c;这个自己找组内的前辈获取即可 2&#xff1a;配置config文件 找到vscode里面ssh处的config文件 人工找…

【Linux】 基础命令 第一篇

目录 ls​编辑 ls -l ls -a ls -i ls ./* cd指令&&pwd cd . && cd .. 绝对路径&#xff1a; dir/Linux/2023/10 相对路径&#xff1a; 跳转至另一路径​编辑 cd~ cd - touch指令(创建文件) stat指令&#xff1a; mkdir 指令(创建文件夹) tree指…

【Unity】2D角色跳跃控制器

最近加了学校的Nova独游社&#xff0c;本文是社团出的二面题&#xff0c;后续有时间优化下可能会做成一个二维冒险小游戏。本文主要涉及相关代码&#xff0c;参考教程&#xff1a;《勇士传说》横版动作类游戏开发教程 效果演示 【Unity】2D角色跳跃模拟器 主要实现功能&#xf…