MySQL(8):聚合函数

聚合函数介绍

聚合函数: 对一组数据进行汇总的函数,输入的是一组数据的集合,输出的是单个值。
聚合函数类型:AVG(),SUM(),MAX(),MIN(),COUNT()
在这里插入图片描述

AVG / SUM

只适用于数值类型的字段(或变量)

SELECT AVG(salary),SUM(salary),AVG(salary) * 107
FROM employees;

在这里插入图片描述

MAX / MIN

适用于数值类型、字符串类型、日期时间类型的字段(或变量)

SELECT MAX(salary),MIN(salary)
FROM employees;

SELECT MAX(last_name),MIN(last_name),MAX(hire_date),MIN(hire_date)
FROM employees;

在这里插入图片描述

COUNT

作用:计算指定字段在查询结构中出现的个数(不包含NULL值的)

SELECT COUNT(employee_id),COUNT(salary),COUNT(2 * salary),COUNT(1),COUNT(2),COUNT(*)
FROM employees ;

在这里插入图片描述
计算表中有多少条记录
方式1:COUNT(*):返回表中记录总数,适用于任意数据类型。
方式2:COUNT(1)
方式3:COUNT(expr) : 不一定对!返回expr不为空的记录总数。

count(*)会统计值为 NULL 的行,而 count(列名)不会统计此列为 NULL 值的行。
不要使用 count(列名)来替代 count(*)count(*) 是 SQL92 定义的标准统计行数的语法,跟数据库无关,跟 NULL非 NULL 无关。

Innodb引擎的表 用count(*),count(1)直接读行数,复杂度是O(n)

如何需要统计表中的记录数,使用COUNT(*)、COUNT(1)、COUNT(具体字段) 哪个效率更高呢?
如果使用的是MyISAM 存储引擎,则三者效率相同,都是O(1)
如果使用的是InnoDB 存储引擎,则三者效率:COUNT(*) = COUNT(1) > COUNT(字段)

SELECT COUNT(commission_pct)
FROM employees;

在这里插入图片描述

SELECT commission_pct
FROM employees
WHERE commission_pct IS NOT NULL;

在这里插入图片描述

公式:AVG = SUM / COUNT

SELECT AVG(salary),SUM(salary)/COUNT(salary),
AVG(commission_pct),SUM(commission_pct)/COUNT(commission_pct),
SUM(commission_pct) / 107
FROM employees;

在这里插入图片描述

GROUP BY 的使用

可以使用GROUP BY子句将表中的数据分成若干组。

SELECT column, group_function(column)
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];

WHERE一定放在FROM后面。
在SELECT列表中所有未包含在组函数中的列都应该包含在 GROUP BY子句中。

#需求:查询各个部门的平均工资,最高工资
SELECT department_id,AVG(salary),SUM(salary)
FROM employees
GROUP BY department_id

在这里插入图片描述

#需求:查询各个job_id的平均工资
SELECT job_id,AVG(salary)
FROM employees
GROUP BY job_id;

在这里插入图片描述

#需求:查询各个department_id,job_id的平均工资
#方式1:
SELECT department_id,job_id,AVG(salary)
FROM employees
GROUP BY  department_id,job_id;
#方式2:
SELECT job_id,department_id,AVG(salary)
FROM employees
GROUP BY job_id,department_id;

在这里插入图片描述

结论1:SELECT中出现的非组函数的字段必须声明在GROUP BY 中。 反之,GROUP BY中声明的字段可以不出现在SELECT中。
结论2:GROUP BY 声明在FROM后面、WHERE后面,ORDER BY 前面、LIMIT前面
结论3:MySQL中GROUP BY中使用WITH ROLLUP
使用 WITH ROLLUP 关键字之后,在所有查询出的分组记录之后增加一条记录,该记录计算查询出的所有记录的总和,即统计记录数量。

SELECT department_id,AVG(salary)
FROM employees
GROUP BY department_id WITH ROLLUP;

在这里插入图片描述
最后新加的一条NULL为总体平均。

SELECT department_id,AVG(salary) avg_sal
FROM employees
GROUP BY department_id
ORDER BY avg_sal ASC;

在这里插入图片描述

当使用ROLLUP时,不能同时使用ORDER BY子句进行结果排序,即ROLLUPORDER BY是互相排斥的。

HAVING

基本使用

在这里插入图片描述
作用:用来过滤数据的
1.行已经被分组。
2.使用了聚合函数。
3.满足HAVING 子句中条件的分组将被显示。
4.HAVING 不能单独使用,必须要跟 GROUP BY 一起使用。

SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000 ;

在这里插入图片描述

非法使用聚合函数 : 不能在 WHERE 子句中使用聚合函数。
要求1:如果过滤条件中使用了聚合函数,则必须使用HAVING来替换WHERE。否则,报错。
要求2:HAVING 必须声明在 GROUP BY 的后面。

WHERE 和 HAVING的对比

区别1: WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件;HAVING 必须要与 GROUP BY 配合使用,可以把分组计算的函数和分组字段作为筛选条件。
区别2: 如果需要通过连接从关联表中获取需要的数据,WHERE 是先筛选后连接,而 HAVING 是先连接后筛选。

WHERE 先筛选数据再关联,执行效率高,不能使用分组中的计算函数进行筛选;
HAVING 可以使用分组中的计算函数,在最后的结果集中进行筛选,执行效率较低。

开发中的选择: 可以在一个查询里面同时使用 WHEREHAVING。包含分组统计函数的条件用 HAVING,普通条件用 WHERE。这样,我们就既利用了 WHERE 条件的高效快速,又发挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很大的差别。

SELECT的执行过程

SELECT 语句的完整结构

#方式1:sql92语法
SELECT ...,....,...
FROM ...,...,....
WHERE 多表的连接条件
AND 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...

#方式2:sql99语法
SELECT ...,....,...
FROM ... JOIN ...
ON 多表的连接条件
JOIN ...
ON ...
WHERE 不包含组函数的过滤条件
AND/OR 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...

#其中:
#(1)from:从哪些表中筛选
#(2)on:关联多表查询时,去除笛卡尔积
#(3)where:从表中筛选的条件
#(4)group by:分组依据
#(5)having:在统计结果中再次筛选
#(6)order by:排序
#(7)limit:分页

SQL 执行过程

SELECT 查询时的两个顺序:

  1. 关键字的顺序是不能颠倒的:SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY ... LIMIT...

  2. SELECT 语句的执行顺序(在 MySQL 和 Oracle 中,SELECT 执行顺序基本相同):FROM -> WHERE -> GROUP BY -> HAVING -> SELECT 的字段 -> DISTINCT -> ORDER BY -> LIMIT

SELECT 语句执行这些步骤的时候,每个步骤都会产生一个 虚拟表 ,然后将这个虚拟表传入下一个步骤中作为输入。需要注意的是,这些步骤隐含在 SQL 的执行过程中,对于我们来说不可见

SQL 的执行原理

SELECT 是先执行 FROM 这一步的。在这个阶段,如果是多张表联查,还会经历下面的几个步骤:
1.首先先通过 CROSS JOIN 求笛卡尔积,相当于得到虚拟表 vt(virtual table)1-1
2.通过 ON 进行筛选,在虚拟表 vt1-1 的基础上进行筛选,得到虚拟表 vt1-2
3.添加外部行。如果我们使用的是左连接、右链接或者全连接,就会涉及到外部行,也就是在虚拟表 vt1-2 的基础上增加外部行,得到虚拟表 vt1-3

如果是两张以上的表,还会重复上面的步骤,直到所有表都被处理完为止。

数据库学习视频:
【MySQL数据库入门到大牛,mysql安装到优化,百科全书级,全网天花板】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/117898.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【IK分词器安装】

安装IK分词器: 下载链接(如果es版本不同可以修改下版本号):https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip 通常下载是比较慢的:有需要可以从…

golang工程——opentelemetry简介、架构、概念、追踪原理

opentelemetry 简介 OpenTelemetry,简称OTel,是一个与供应商无关的开源可观测性框架,用于检测、生成、收集和导出 遥测数据,如轨迹、度量、日志。OTel的目标是提供一套标准化的供应商无关SDK、API和工具,用于接 收、…

Mean-Shift聚类方法

刘玉琪 跟随 出版于 台湾人工智能学院 一、说明 上一篇介绍了基于密度的分群方法——DBSCAN,本篇会介绍另一个分群方法——Mean Shift,与DBSCAN一样不需要预先知道欲分群的数量,而对于分群的形状也没有限制。 然而,这个方法是基…

网络层:控制平面

路由选择算法 路由选择算法就是为了在端到端的数据传输中,选择路径上路由器的最好的路径。通常,一条好的路径指具有最低开销的路径。最低开销路径是指源和目的地之间具有最低开销的一条路。 根据集中式还是分散式来划分 集中式路由选择算法&#xff1a…

基础Redis-Java客户端操作介绍

Java客户端操作介绍 2.基础-Redis的Java客户端a.介绍b.Jedisc.Jedis连接池d.SpringDataRedise.SpringDataRedis的序列化方式f.StringRedisTemplate 2.基础-Redis的Java客户端 a.介绍 Jedis 以Redis命令作为方法名称,学习成本低,简单实用。但是Jedis实例…

性能工作站,双十一大促,超值推荐:蝰蛇峡谷 NUC12SNKi7迷你主机,优惠抢购!

近年来,ITX主机和小型化系统变得越来越受欢迎。英特尔的NUC受到许多玩家们的关注。作为mini主机的代表NUC小巧设计和灵活性使它成为很多玩家和科技爱好者的选择。它的高性能和可玩性使得它在迷你型准系统市场上备受推崇。双11来临之际,我们分析下哪款高性…

【React】【react-globe.gl】3D Objects效果

目录 想要实现的效果实现过程踩坑安装依赖引入页面 想要实现的效果 示例地址 实现过程 踩坑 示例是通过script引入的依赖,但本人需要在react项目中实现该效果。按照react-globe.gl官方方法引入总是报错 Cant import the named export AmbientLight from non EcmaS…

前端的几种网络请求方式

网络请求 node编写接口 这里用到的几个包的作用 express:基于 Node.js 平台,快速、开放、极简的 Web 开发框架,官网:https://www.expressjs.com.cn/cors:用来解决跨域问题body-parser:可以通过 req.body…

Leetcode48旋转图像

思路:找规律 方法一、一般辅助数组解法 行列转换,第一行变到第三列,第二行变到第二列,第三行变到第一列 matrix[row][col] matrix[col][n-row-1] 然后复制回原数组 class Solution {public void rotate(int[][] matrix) {in…

Spring cloud负载均衡 @LoadBalanced注解原理

接上一篇文章,案例代码也在上一篇文章的基础上。 在上一篇文章的案例中,我们创建了作为Eureka server的Eureka注册中心服务、作为Eureka client的userservice、orderservice。 orderservice引入RestTemplate,加入了LoadBalanced注解&#x…

线性【SVM】数学原理和算法实现

一. 数学原理 SVM是一类有监督的分类算法,它的大致思想是:假设样本空间上有两类点,如下图所示,我们希望找到一个划分超平面,将这两类样本分开,我们希望这个间隔能够最大化来使得模型泛化能力最强。 如上图所…

谷歌浏览器默认https 怎么关闭

#然后把网址从 https 改成http 回车即可

用于3D Visual Grounding的多模态场景图

文章目录 引言方法1. Language Scene Graph Module Paper:《Free-form Description Guided 3D Visual Graph Network for Object Grounding in Point Cloud》【ICCV’2021】 Code:https://github.com/PNXD/FFL-3DOG 引言 3DVG任务有以下三个挑战&#x…

c语言 简单认识 指针和结构体

指针 代码 #include <stdio.h>int main(){int a 10;//指针类型需要与变量的类型相同&#xff0c;且后面需要添加一个*符号&#xff08;注意这里不是乘法运算&#xff09;表示是对于类型的指针int * p &a; //这里的&并不是进行按位与运算&#xff0c;而是取…

迅为iTOP-i.MX8M开发板使用 make 工具

make 工具是编译辅助工具&#xff0c;用来解决使用命令编译工程非常繁琐的问题。 调用这个命令工具&#xff1a;我们在 windows 上编程使用 ide &#xff0c;我们有图形界面&#xff0c;有相应的按钮&#xff0c;比如说 build 或者 run 来编译。其实 make 这个编译辅助工具使…

【Python基础】IF、Else判断以及Whlie、for循环介绍符实例

运算符 1. if 语句体验2.逻辑运算3. if 语句进阶4.While循环4.1基本语法 5.break 和 continue6. for循环 1. if 语句体验 if 判断语句基本语法 在 Python 中&#xff0c;if 语句 就是用来进行判断的&#xff0c;格式如下&#xff1a; if 要判断的条件: 条件成立时&#xff0c;…

如何使用腾讯云+Picgo搭建图床

目录 一、进入腾讯云进行实名认证 二、领取免费存储额度 2.1新用户界面概览就可以领取 三、开始创建远端图床并生成秘钥等信息 3.1创建存储桶 3.2配置基本信息 3.3配置高级选项 3.4确认配置页面点击创建即可 3.5创建访问秘钥 3.6查看秘钥等信息 3.7查看桶名称 四、图…

lv9 嵌入式开发 数据库sqlite

1 数据库基本概念 数据&#xff08;Data&#xff09; 能够输入计算机并能被计算机程序识别和处理的信息集合 数据库 &#xff08;Database&#xff09; 数据库是在数据库管理系统管理和控制之下&#xff0c;存放在存储介质上的数据集合 2 常用的数据库 大型数据库…

【实践篇】一次Paas化热部署实践分享 | 京东云技术团队

前言 本文是早些年&#xff0c;Paas化刚刚提出不久时&#xff0c;基于部门内第一次Paas化热部署落地经验所写&#xff0c;主要内容是如何构建一些热部署代码以及一些避雷经验。 一、设计-领域模型设计 1.首先&#xff0c;确定领域服务所属的领域 2.其次&#xff0c;确定垂直…

前端基础之BOM和DOM

1、BOM和DOM简述 BOM&#xff1a;指浏览器对象模型&#xff0c;它使JavaScript有能力与浏览器进行对话 DOM&#xff1a;指文档对象模型&#xff0c;通过它&#xff0c;可以访问HTML文档的所有元素 2、Window对象 所有浏览器都支持window对象&#xff0c;他表示浏览器窗口。 如果…