基于野狗算法的无人机航迹规划-附代码

基于野狗算法的无人机航迹规划

文章目录

  • 基于野狗算法的无人机航迹规划
    • 1.野狗搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用野狗算法来优化无人机航迹规划。

1.野狗搜索算法

野狗算法原理请参考:https://blog.csdn.net/u011835903/article/details/122368818

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得野狗搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用野狗算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,野狗算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/115900.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序:实现多个按钮提交表单

效果 核心步骤 通过data-type给不同按钮进行设置&#xff0c;便于很好的区分不同按钮执行不同功能 data-type"" 完整代码 wxml <form action"" bindsubmit"formSubmit"><button style"margin-bottom:5%" data-type"pa…

​C++内存模型

c语言分区:栈、堆、全局/静态存储区、常量存储区、代码区(.text段)、自由存储区 1、栈区&#xff08;stack&#xff09;— 由编译器自动分配释放&#xff0c;存放函数的参数值&#xff0c;局部变量的值等。其操作方式类似于数据结构中的栈。向下生长 2、堆区&#xff08;heap&…

超声波俱乐部分享:百度世界大会点燃AI创业者新希望

10月22日&#xff0c;2023年第十三期超声波俱乐部内部分享会在北京望京举行。本期的主题是&#xff1a;百度世界大会点燃AI创业者新希望。 到场的嘉宾有&#xff1a;超声波创始人杨子超&#xff0c;超声波联合创始人、和牛商业创始人刘思雨&#xff0c;中国国际经济交流中心研…

MFC String类的初始化学习

之前写过CString的用法&#xff1b; VC CString 编程实例图解_bcbobo21cn, cstring-CSDN博客 下面单独看一下CString的各种初始化方式&#xff1b; void CTest2View::OnDraw(CDC* pDC) {CTest2Doc* pDoc GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for nati…

vscode1.83远程连接失败

&#xff08;报错信息忘记截图了 总之卡在vscode-server.tar.gz的下载那里&#xff0c;一直404&#xff0c;删了C:\Users\Administrator\.ssh\known_hosts也不管用 看了一下vscode1.83的commitID为a6606b6ca720bca780c2d3c9d4cc3966ff2eca12&#xff0c;网友说可以通过以下网…

C++笔记之动态数组的申请和手动实现一个简单的vector

C笔记之动态数组的申请和手动实现一个简单的vector code review! 文章目录 C笔记之动态数组的申请和手动实现一个简单的vector1.C语言中动态数组的申请与使用1.动态数组的申请使用new和delete使用std::vector 1.std::vector的底层实现2.手动实现一个简单的vector:使用一个指向…

Java设计模式之观察者模式

目录 定义 结构 案例 优点 缺点 使用场景 JDK源码解析 定义 又被称为发布-订阅&#xff08;Publish/Subscribe&#xff09;模式&#xff0c;它定义了一种一对多的依赖关系&#xff0c;让多个观察者对象同时监听某一个主题对象。这个主题对象在状态变化时&#xff0c;会…

iSlide2024一款基于PPT的插件工具包含38个设计辅助功能

根据使用者情况表明iSlide 是一款拥有30W素材的PPT高效设计软件&#xff0c;可提高90%工作效率&#xff0c;现全球已有超过1400万使用者&#xff0c;智能排版原创高品模板可商用图形&#xff0c;真正摆脱PPT的束缚&#xff0c;把精力用在该用的地方。我们都明白islide插件功能特…

PYTHON学习

元组不可修改&#xff1a; 元组支持下标索引。 字符串也是容器&#xff0c;不支持修改。

selenium自动化测试入门 —— 设置等待时间

time.sleep(3) 固定等待3秒 driver.implicitly_wait(10) 隐性的等待&#xff0c;对应全局 WebDriverWait( driver, timeout).until(‘有返回值的__call__()方法或函数’) 显性的等待&#xff0c;对应到元素 一、time.sleep(seconds) 固定等待 import time time.sleep(3) #…

Gopro hero5运动相机格式化后恢复案例

Gopro运动相机以稳定著称&#xff0c;旗下的Hero系列销售全球。下面我们来看一个Hero5格式化后拍了少量素材的恢复案例。 故障存储:64G MicroSD卡 Exfat文件系统 故障现象: 64G的卡没备份数据时做了格式化操作又拍了一条&#xff0c;发现数据没有备份&#xff0c;客户自行使…

Pytorch 文本情感分类案例

一共六个脚本,分别是: ①generateDictionary.py用于生成词典 ②datasets.py定义了数据集加载的方法 ③models.py定义了网络模型 ④configs.py配置一些参数 ⑤run_train.py训练模型 ⑥run_test.py测试模型 数据集https://download.csdn.net/download/Victor_Li_/88486959?spm1…

《研发效能(DevOps)工程师》课程简介(三)丨IDCF

在研发效能领域中&#xff0c;【开发与交付】的学习重点在于掌握高效的开发工具和框架&#xff0c;了解敏捷开发方法&#xff0c;掌握持续集成与持续交付技术&#xff0c;以及如何保证应用程序的安全性和合规性等方面。 由国家工业和信息化部教育与考试中心颁发的职业技术证书…

【多线程】龟兔赛跑

package org.example;public class Race implements Runnable {//胜利者private static String winner;Overridepublic void run() {for(int i0;i<100;i){boolean flag gameOver(i);//如果flag>100,结束比赛if(flag){break;}System.out.println(Thread.currentThread().g…

Vue实现消费清单明细饼图展示

功能 可以进行消费项增删消费额大于500会标红消费金额合计饼图展示消费项 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-…

U盘显示无媒体怎么办?方法很简单

当出现U盘无媒体情况时&#xff0c;您可以在磁盘管理工具中看到一个空白的磁盘框&#xff0c;并且在文件资源管理器中不会显示出来。那么&#xff0c;导致这种问题的原因是什么呢&#xff1f;我们又该怎么解决呢&#xff1f; 导致U盘无媒体的原因是什么&#xff1f; 当您遇到上…

错误号码2058 Plugin caching_sha2_password could not be loaded:vX八白白白白白令自砸

sqlyog连接数据库时报错&#xff1a; 错误号码2058 Plugin caching_sha2_password could not be loaded:vX八白白白白白令自砸 网上查了资料&#xff0c;是MySQL 从 8.0 版本开始加密方式改变导致的原因。具体的咋也不再这里分析了&#xff0c;就直说如何解决这个问题。下面三…

软考之软件工程基础理论知识

软件工程基础 软件开发方法 结构化方法 将整个系统的开发过程分为若干阶段&#xff0c;然后依次进行&#xff0c;前一阶段是后一阶段的工作依据按顺序完成。应用最广泛。特点是注重开发过程的整体性和全局性。缺点是开发周期长文档设计说明繁琐&#xff0c;工作效率低开发前要…

BEV-YOLO 论文学习

1. 解决了什么问题&#xff1f; 出于安全和导航的目的&#xff0c;自驾感知系统需要全面而迅速地理解周围的环境。目前主流的研究方向有两个&#xff1a;第一种传感器融合方案整合激光雷达、相机和毫米波雷达&#xff0c;和第二种纯视觉方案。传感器融合方案的感知表现鲁棒&am…

docker学习笔记

1. docker安装 可以从以下地址下载并安装docker&#xff0c;Linux&#xff0c;Windows&#xff0c;MacOS均支持&#xff1a; 官网&#xff1a;https://docs.docker.com/engine/install/阿里云镜像安装&#xff1a;https://developer.aliyun.com/mirror/docker-ce Docker 安装…