课题学习(十)----阅读《基于数据融合的近钻头井眼轨迹参数动态测量方法》论文笔记

一、 引言

   该论文针对三轴加速度计、磁通门和速率陀螺随钻测量系统,建立了基于四元数井眼轨迹参数测量模型,并依据状态方程和量测方程,应用2个扩卡尔曼滤波器、1个无迹卡尔曼滤波器和磁干扰校正系统对加速度计、磁通门信号进行滤波、校正,形成了基于数据融合的近钻头井眼轨迹参数动态测量方法。
   基于数据融合算法的近钻头井眼轨迹参数动态测量方法的测量流程如下图所示:
在这里插入图片描述
   测量步骤:
   1. 将加速度计、磁通门、转动角速度四元数带入KF1滤波器,进行扩展卡尔曼滤波,得出井斜角、方位角估计值:
在这里插入图片描述
   2. 将加速度计四元数带入KF2 滤波器,进行扩展卡尔曼滤波,得出测深增量 Δ h m \Delta h_m Δhm
在这里插入图片描述
   3. 将测深增量 Δ h m \Delta h_m Δhm、井斜角、方位角估计值带入KF3 滤波器,进行无迹卡尔曼滤波,得出井斜角、方位角最终估计值:
在这里插入图片描述
   4.利用井斜角、方位角最终估计值计算磁性工具面角 ω m \omega_m ωm与重力工具面角的差 Δ ω \Delta\omega Δω
在这里插入图片描述
   5.利用磁性工具面角和角差 Δ ω \Delta\omega Δω求出重力工具面角 ω g \omega_g ωg
在这里插入图片描述
   后面的部分会对上述五个步骤进行详细的介绍,下面将进行近钻头动态井眼轨迹测量模型的探讨。

1.1 近钻头动态井眼轨迹测量模型

   近钻头动态测量系统由三轴加速度计、三轴磁通门和角速率陀螺仪组成,根据地理坐标系 O − N E D O-NED ONED 和钻具坐标系 O − x y z O-xyz Oxyz 的对应关系,建立欧拉角转换矩阵,并转换为四元数,k 时刻姿态转换矩阵T表示为:
在这里插入图片描述
   T ( k ) = [ q 0 2 + q 1 2 − q 2 2 − q 3 2 2 ( q 1 q 2 − q 0 q 3 ) 2 ( q 1 q 3 + q 0 q 2 ) 2 ( q 1 q 2 + q 0 q 3 ) q 0 2 − q 1 2 + q 2 2 − q 3 2 2 ( q 2 q 3 − q 0 q 1 ) 2 ( q 1 q 3 − q 0 q 2 ) 2 ( q 2 q 3 + q 1 q 0 ) q 0 2 − q 1 2 − q 2 2 + q 3 2 ] T(k)=\begin{bmatrix}q_0^2+q_1^2-q_2^2-q_3^2&2(q_1q_2-q_0q_3)&2(q_1q_3+q_0q_2)\\ 2(q_1q_2+q_0q_3)&q_0^2-q_1^2+q_2^2-q_3^2&2(q_2q_3-q_0q_1)\\2(q_1q_3-q_0q_2)&2(q_2q_3+q_1q_0)&q_0^2-q_1^2-q_2^2+q_3^2\end{bmatrix} T(k)= q02+q12q22q322(q1q2+q0q3)2(q1q3q0q2)2(q1q2q0q3)q02q12+q22q322(q2q3+q1q0)2(q1q3+q0q2)2(q2q3q0q1)q02q12q22+q32
   OK,模型、四元数建立完成,下面仔细品味五个步骤:

二、 数据融合近钻头井眼轨迹参数动态测量方法

2.1 估计近钻头井斜角、方位角的扩展卡尔曼滤波算法KF-1

在这里插入图片描述
   基于四元数的KF1 的状态方程和量测方程:
Q ( k + 1 ) = ( I + t s A ( k ) ) Q ( k ) + w ( k ) Q(k+1)=(I+t_sA(k))Q(k)+w(k) Q(k+1)=(I+tsA(k))Q(k)+w(k)
Z ( k + 1 ) = F ( Q ( k ) ) + v ( k ) Z(k+1)=F(Q(k))+v(k) Z(k+1)=F(Q(k))+v(k)
   Q(k) 为k 时刻的状态值;I 为单位矩阵;ts 为采样周期;w(k) 为k 时刻系统高斯白噪声;v(k) 为k 时刻传感器观测噪声;A(k) 为k 时刻状态转移矩阵;F(x) 为非线性函数;Z(k+1) 为k+1 时刻的观测值。
   Z ( k + 1 ) = [ B x B y B z a x a y a z ] = [ T ( k ) [ B c o s θ 0 B s i n θ ] T ( k ) [ 0 0 g ] ] + v ( k ) Z(k+1)=\begin{bmatrix}B_x\\B_y\\B_z\\a_x\\a_y\\a_z\end{bmatrix}=\begin{bmatrix}T(k)\begin{bmatrix}Bcos\theta\\0\\Bsin\theta\end{bmatrix}\\T(k)\begin{bmatrix}0\\0\\g\end{bmatrix}\end{bmatrix}+v(k) Z(k+1)= BxByBzaxayaz = T(k) Bcosθ0Bsinθ T(k) 00g +v(k)
   Q ( k + 1 ) = ( I + t s [ 0 − w x ( k ) − w y ( k ) − w z ( k ) w x ( k ) 0 w z ( k ) − w y ( k ) w y ( k ) − w z ( k ) 0 w x ( k ) w z ( k ) w y ( k ) − w x ( k ) 0 ] ) Q(k+1)=\begin{pmatrix}I+t_s\begin{bmatrix}0&-w_x(k)&-w_y(k)&-w_z(k)\\w_x(k)&0&w_z(k)&-w_y(k)\\w_y(k)&-w_z(k)&0&w_x(k)\\w_z(k)&w_y(k)&-w_x(k)&0\end{bmatrix}\end{pmatrix} Q(k+1)= I+ts 0wx(k)wy(k)wz(k)wx(k)0wz(k)wy(k)wy(k)wz(k)0wx(k)wz(k)wy(k)wx(k)0
  

三轴加速度信号、三轴磁通门信号、角速率陀螺信号进行数据融合后,采用扩展卡尔曼滤波算法,得到最优姿态估计,动态解算出钻井工具的实时姿态参数,确保钻具姿态测量计算的精度,减少计算量,对四元数Q 进行更新

   上述是论文中的引用,这句话我在思考了好几分钟,精简了一下:三轴加速度信号、三轴磁通门信号、角速率陀螺信号进行数据融合后,采用扩展卡尔曼滤波算法,得到最优姿态估计;并使用上式,通过陀螺仪测得的三轴角速度对四元数Q 进行更新,计算经过KF1滤波后的下面各值: 井斜角 α K F 1 = a r c t a n 2 ( q 0 q 1 + q 2 q 3 ) 1 − 2 ( q 1 2 + q 2 2 ) 井斜角\alpha_{KF1}=arctan\frac{2(q_0q_1+q_2q_3)}{1-2(q_1^2+q_2^2)} 井斜角αKF1=arctan12(q12+q22)2(q0q1+q2q3)
方位角 ϕ K F 1 = a r c t a n 2 ( q 0 q 3 + q 1 q 2 ) 1 − 2 ( q 0 2 + q 3 2 ) 方位角\phi_{KF1}=arctan\frac{2(q_0q_3+q_1q_2)}{1-2(q_0^2+q_3^2)} 方位角ϕKF1=arctan12(q02+q32)2(q0q3+q1q2)
高边工具面角 ω g , K F 1 = a r c t a n ( q 0 q 2 + q 1 q 3 ) ( q 0 q 1 − q 2 q 3 ) 高边工具面角\omega_{g,KF1}=arctan\frac{(q_0q_2+q_1q_3)}{(q_0q_1-q_2q_3)} 高边工具面角ωg,KF1=arctan(q0q1q2q3)(q0q2+q1q3)
磁性工具面角 ω m , K F 1 = a r c t a n ( q 0 q 2 + q 0 q 3 ) c o s θ + ( q 1 q 2 + q 0 q 3 ) s i n θ ( q 0 2 − q 1 2 − q 2 2 + q 3 2 ) c o s θ + ( q 1 q 3 − q 0 q 2 ) s i n θ 磁性工具面角\omega_{m,KF1}=arctan\frac{(q_0q_2+q_0q_3)cos\theta+(q_1q_2+q_0q_3)sin\theta}{(q_0^2-q_1^2-q_2^2+q_3^2)cos\theta+(q_1q_3-q_0q_2)sin\theta} 磁性工具面角ωm,KF1=arctan(q02q12q22+q32)cosθ+(q1q3q0q2)sinθ(q0q2+q0q3)cosθ+(q1q2+q0q3)sinθ

2.2 估计近钻头测深增量的扩展卡尔曼滤波算法

在这里插入图片描述
   根据 a z = T ( k ) g + v ( k ) a_z=T(k)g+v(k) az=T(k)g+v(k),运用扩展卡尔曼滤波器计算系统经过ts 后测深增量 Δ h m \Delta h_m Δhm

z 轴加速度计主要受到重力加速度和振动的干扰,由于采样时间 t s t_s ts为毫秒级,在单位采样周期内,重力加速度和振动的干扰可以视为近似相同,可以忽略振动对加速度计测量结果的影响。

   k 为当前采样点,z 轴加速度增量 Δ a z \Delta a_z Δaz Δ a z = a z ( k + 1 ) − g c o s ( α K F 1 ( k ) ) \Delta a_z=a_z(k+1)-gcos(\alpha_{KF1}(k)) Δaz=az(k+1)gcos(αKF1(k)) Δ a z = Δ h m ′ ′ \Delta a_z=\Delta h_m'' Δaz=Δhm′′
   为了提高对测深增量的估计,对Δhm 进行二阶泰勒展开: Δ h m ( k + 1 ) = Δ h m ( k ) + Δ h m ( k ) ′ t s + 0.5 Δ h m ( k ) ′ ′ t s 2 \Delta h_m(k+1)=\Delta h_m(k)+\Delta h_m(k)'t_s+0.5\Delta h_m(k)''t_s^2 Δhm(k+1)=Δhm(k)+Δhm(k)ts+0.5Δhm(k)′′ts2
   通过对上式对 t s t_s ts分别求一次导、二次导,可得到下面的矩阵表达式:
   KF2 的状态方程和量测方程为: [ Δ h m ( k + 1 ) Δ h m ( k + 1 ) ′ Δ h m ( k + 1 ) ′ ′ ] = [ 1 t s t s 2 0 1 0 0 0 1 ] [ Δ h m ( k + 1 ) Δ h m ( k + 1 ) ′ Δ h m ( k + 1 ) ′ ′ ] + w ( k ) \begin{bmatrix}\Delta h_m(k+1)\\\Delta h_m(k+1)'\\\Delta h_m(k+1)''\end{bmatrix}=\begin{bmatrix}1&t_s&t_s^2\\0&1&0\\0&0&1\end{bmatrix}\begin{bmatrix}\Delta h_m(k+1)\\\Delta h_m(k+1)'\\\Delta h_m(k+1)''\end{bmatrix}+w(k) Δhm(k+1)Δhm(k+1)Δhm(k+1)′′ = 100ts10ts201 Δhm(k+1)Δhm(k+1)Δhm(k+1)′′ +w(k)
Δ a z = [ 0 0 1 ] [ Δ h m ( k + 1 ) Δ h m ( k + 1 ) ′ Δ h m ( k + 1 ) ′ ′ ] + v ( k ) \Delta a_z=\begin{bmatrix}0&0&1\end{bmatrix}\begin{bmatrix}\Delta h_m(k+1)\\\Delta h_m(k+1)'\\\Delta h_m(k+1)''\end{bmatrix}+v(k) Δaz=[001] Δhm(k+1)Δhm(k+1)Δhm(k+1)′′ +v(k)

2.3 估计近钻头井眼轨迹参数的无迹卡尔曼滤波算法

在这里插入图片描述
   如下图所示,在单位采样时间内,井眼轨迹趋于平滑曲线,可以根据前面2 个测点的狗腿度和KF2输出测深增量对井眼轨迹进行递归式预测:
在这里插入图片描述
   补充一点关于狗腿度的定义(文字、图片均来源于百度百科!!!):

狗腿度:从井眼内的一点到另一个点,井眼前进方向变化的角度。该角度既反映了井斜角度的变化,又反映了方位角度的变化,通常又叫全角变化率或井眼曲率。
在这里插入图片描述

   下面又是一堆公式袭来,狗腿度的公式是真看不明白,直接截图了:
在这里插入图片描述
在这里插入图片描述

   KF3 滤波后的井斜角和方位角: α K F 3 = α ( k + 1 ) + v α ( k ) \alpha_{KF3}=\alpha(k+1)+v_{\alpha}(k) αKF3=α(k+1)+vα(k)
ϕ K F 3 = ϕ ( k + 1 ) + v ϕ ( k ) \phi_{KF3}=\phi(k+1)+v_{\phi}(k) ϕKF3=ϕ(k+1)+vϕ(k)
   v α 、 v ϕ v_{\alpha}、v_{\phi} vαvϕ分别为井斜角和方位角的系统观测噪声。

2.4 近钻头重力工具面角的估计

在这里插入图片描述
   根据旋转测量原理(这个我没找到相关定义,在本篇论文的参考文献12~13中应该有介绍):同一时刻的重力工具面角与磁工具面角的差与测量时刻的井斜角、方位角、地磁倾角呈现一定函数关系。根据KF3 求出的井眼井斜角和方位角计算磁性工具面角与重力工具面角的差Δω: Δ ω = − 90 + a r c t a n s i n ϕ K F 3 c o s α K F 3 c o s ϕ K F 3 − t a n θ s i n α K F 3 \Delta\omega=-90+arctan\frac{sin\phi_{KF3}}{cos\alpha_{KF3}cos\phi_{KF3}-tan\theta sin \alpha_{KF3}} Δω=90+arctancosαKF3cosϕKF3tanθsinαKF3sinϕKF3
   根据Δω,计算旋近钻头动态重力工具面角估计值 ω d g , e ω_{dg,e} ωdg,e ω d g , e = ω m , K F 3 + Δ ω ω_{dg,e}=\omega_{m,KF3}+\Delta\omega ωdg,e=ωm,KF3+Δω
   我觉得在此处, ω m , K F 3 \omega_{m,KF3} ωm,KF3应该是 ω m , K F 1 \omega_{m,KF1} ωm,KF1,当然,从算法的框架图看出也没啥问题,但是 ω m , K F 1 \omega_{m,KF1} ωm,KF1是在KF1中给出明确的公式的。
在这里插入图片描述

2.5 磁干扰情况下的磁性工具面角

在这里插入图片描述

   该部分主要降低磁干扰。磁场的干扰导致磁通门测量的磁场强度发生偏移和变形。磁干扰下的测量结果如下图 所示:
在这里插入图片描述
   在实际钻井过程中,井下仪器旋转一圈时,钻深可以忽略不计,可以看作仪器在原地旋转了一圈。z 轴磁通门的测量结果可以认为没有发生变化,而x 轴和y 轴磁通门的测量值不断发生变化,如上图所示。三轴磁通门传感器的测量数据记为(Bx,By,Bx),地球磁场可以看成一个固定值,即: B x 2 + B y 2 + B z 2 = C 2 B_x^2+B_y^2+B_z^2=C^2 Bx2+By2+Bz2=C2
   C 为常数.
   根据椭圆校正原理, 对短时间内采集的Bx,By 进行磁干扰校正,得出排除磁干扰的Bxm 和Bym:
在这里插入图片描述
   Bxm 和Bym 为x 轴和y 轴排除磁干扰后的磁场强度。

三、结束

   论文的主要算法部分就是这些,也比较好理解,作者也给出了计算的步骤以及详细的公式,在复现上应该是比较容易的。论文后面部分就是算法效果的验证了,这部分就不再赘述了。

四、往期回顾

课题学习(一)----静态测量
课题学习(二)----倾角和方位角的动态测量方法(基于磁场的测量系统)
课题学习(三)----倾角和方位角的动态测量方法(基于陀螺仪的测量系统)
课题学习(四)----四元数解法
课题学习(五)----阅读论文《抗差自适应滤波的导向钻具动态姿态测量方法》
课题学习(六)----安装误差校准、实验方法
课题学习(七)----粘滑运动的动态算法
课题学习(八)----卡尔曼滤波动态求解倾角、方位角
课题学习(九)----阅读《导向钻井工具姿态动态测量的自适应滤波方法》论文笔记

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/114408.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【从瀑布模式到水母模式:ChatGPT如何赋能软件研发全流程】

你是否曾读过一本让你欲罢不能的计算机书籍?它可能为你打开了新的技术世界大门,或者是帮助你解决了棘手的编程难题。 前言: 计算机技术的发展和互联网的普及,使信息处理和传输变得更加高效,极大地改变了金融、商业、…

超低价:阿里云双11服务器优惠价格表_87元一年起

2023阿里云双十一优惠活动已经开启了,轻量2核2G服务器3M带宽优惠价87元一年、2核4G4M带宽优惠价165元一年,云服务器ECS经济型e实例2核2G3M固定带宽优惠价格99元一年,还有2核4G、2核8G、4核8G、4核16G、8核32G等配置报价,云服务器e…

解决爬虫在重定向(Redirect)情况下,URL没有变化的方法

重定向是一种网络服务,它可以实现从一个网页跳转到另一个网页的功能。它把用户请求的网页重定向到一个新的位置,而这个位置可以是更新的网页,或最初请求的网页的不同版本。另外,它还可以用来改变用户流量,当用户请求某…

React基础源码解析

前言: 前端魔术师卡颂的react学习视频(1 搭建项目架构_哔哩哔哩_bilibili)中提到了Rodrigo Pombo的一篇react源码教程:Build your own React 本文档分组旨在翻译和记录这篇文章的学习心得,作为react源码学习入门。 …

闭循环低温恒温器的使用注意事项

与液氮恒温器相比,闭循环低温恒温器显得稍微复杂一些!这主要表现在组成部分、体积重量、使用操作、升降温时间等方面。闭循环低温恒温器主要由冷头、氦压缩机、两根氦气连管组成,配套设备还有控温仪、真空泵,可能还有循环水冷机。…

【Proteus仿真】【Arduino单片机】简易电子琴

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器,使用无源蜂鸣器、按键等。 主要功能: 系统运行后,按下K1-K7键发出不同音调。 二、软件设计 /* 作者:嗨小易&a…

动作捕捉系统处理单点多点丢点问题

在动作捕捉数据采集过程中,丢点是经常容易遇到的问题。NOKOV度量动作捕捉软件可以方便地解决丢点问题。 一、单点丢点的处理 如下图,已经采集了动捕数据。 查看是否有丢点,在形影软件左上角选择“窗口分割”,在下方分割出一个空…

Python接口自动化测试实战,一篇足矣

接口自动化测试是指通过编写程序来模拟用户的行为,对接口进行自动化测试。Python是一种流行的编程语言,它在接口自动化测试中得到了广泛应用。下面详细介绍Python接口自动化测试实战。 1、接口自动化测试框架 在Python接口自动化测试中,我们…

ROS学习笔记(4):ROS架构和通讯机制

前提 前4篇文章以及帮助大家快速入门ROS了,而从第5篇开始我们会更加注重知识积累。同时我强烈建议配合B站大学的视频一起服用。 1.ROS架构三层次: 1.基于Linux系统的OS层; 2.实现ROS核心通信机制以及众多机器人开发库的中间层&#xff1b…

HarmonyOS开发:基于http开源一个网络请求库

前言 网络封装的目的,在于简洁,使用起来更加的方便,也易于我们进行相关动作的设置,如果,我们不封装,那么每次请求,就会重复大量的代码逻辑,如下代码,是官方给出的案例&am…

CSS3背景样式

在CSS 2.1中,background属性的功能还无法满足设计的需求,为了方便设计师更灵活地设计需要的网页效果,CSS3在原有background基础上新增了一些功能属性,可以在同一个对象内叠加多个背景图像,可以改变背景图像的大小尺寸&…

nodelist 与 HTMLCollection 的区别

原地址 https://cloud.tencent.com/developer/article/2013289 节点与元素 根据 W3C 的 HTML DOM 标准,HTML 文档中的所有内容都是节点: 整个文档是一个文档节点每个 HTML 元素是元素节点HTML 元素内的文本是文本节点每个 HTML 属性是属性节点注释是注…

基于C语言实现扫雷小游戏

扫雷游戏 1. 扫雷游戏分析和设计1.1 扫雷游戏的功能说明1.2 游戏的分析和设计1.2.1 数据结构的分析 2. 扫雷游戏的代码实现3. 扫雷游戏的扩展 1. 扫雷游戏分析和设计 1.1 扫雷游戏的功能说明 使用控制台实现经典的扫雷游戏 游戏可以通过菜单实现继续玩或者退出游戏 扫雷的棋…

【考研数学】概率论与数理统计 —— 第七章 | 参数估计(2,参数估计量的评价、正态总体的区间估计)

文章目录 一、参数估计量的评价标准1.1 无偏性1.2 有效性1.3 一致性 二、一个正态总体参数的双侧区间估计2.1 对参数 μ \mu μ 的双侧区间估计 三、一个正态总体的单侧置信区间四、两个正态总体的双侧置信区间写在最后 一、参数估计量的评价标准 1.1 无偏性 设 X X X 为总…

技能证里的天花板—阿里云云计算架构师ACE认证!

在当今的社会中,想要获得一份好工作、得到丰厚的报酬,唯一的方法就是证明自己优秀,能给公司创造价值,是大多数公司想要看到的。 那么在面试过程中,怎么样才能让面试官一眼就记住呢?那一定是有一份足够优秀…

JVM虚拟机:JVM的垃圾回收清除算法(GC)有哪些

垃圾回收清除算法 引用计数法 标记清除 拷贝算法 标记压缩 引用计数法 有一个引用指向对象,那么引用计数就加1,少一个引用指向,那么引用计数就减1,这种方法了解一下就好,JVM机会不会使用这种方法,因为它在每次对象赋值的时候都要维护引用计数器,且计数器本身也有一定的…

JAVA虚拟机-第2章 Java自动内存管理-异常实践

Java堆溢出 堆的参数设置&#xff1a;将堆的最小值-Xms参数与最大值-Xmx参数设置 public class HeapOOM {static class OOMObject {}public static void main(String[] args) {List<OOMObject> list new ArrayList<OOMObject>();while (true) {list.add(new OO…

idea 配置checkstyle全过程

checkstyle是提高代码质量,检查代码规范的很好用的一款工具&#xff0c;本文简单介绍一下集成的步骤&#xff0c;并提供一份完整的checkstyle的代码规范格式文件&#xff0c;以及常见的格式问题的解决方法。 一&#xff0c;安装 打开idea的文件选项&#xff0c;选择设置&…

Unity3D实现页面的滑动切换功能

效果展示 Unity3D实现页面的滑动切换 效果 文章目录 前言一、先上代码二、创建UI1.创建Scroll View如下图&#xff0c;并挂载该脚本&#xff1a;2.Content下创建几个Itme 总结 前言 好记性不如烂笔头&#xff01; 一、先上代码 /*******************************************…

前端性能分析工具

前段时间在工作中,需要判断模块bundle size缩减对页面的哪些性能产生了影响, 因此需要了解前端的性能指标如何定义的,以及前端有哪些性能分析工具, 于是顺便整理了一篇笔记, 以供前端小白对性能这块知识点做一个入门级的了解. 页面渲染 在了解性能指标和分析工具之前,有必要先…