AQS面试题总结

一:线程等待唤醒的实现方法

二: 介绍一下LockSupport

三:AQS是什么

AQS使用一个volatile的int类型的成员变量来表示同步状态,通过内置的FIFO队列完成资源获取排队工作,将每条要去抢占资源的线程封装成一个NODE节点来实现锁的分配,通过CAS完成对State值的修改,
AQS的本质是一个双向队列加一个状态为state

五:公平锁与非公平锁的区别

公平锁: 多个线程按照线程调用lock()的顺序去获得锁,线程会直接进入队列去排队,永远都是队列的第一位才能得到锁。

非公平锁: 多个线程去获取锁的时候,会直接去尝试获取,获取不到,再去进入等待队列,如果能获取到,就直接获取到锁。

六: 非公平锁加锁的源码分析

tryAcquire(arg):尝试获取锁
addWaiter(Node.EXCLUSIVE):添加到同步队列
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)):队列里自旋等待获取等

第一步、tryAquire

先获取当前AQS 的state的值,判断是否为0,如果为0表示没有人抢占,此刻他抢占,返回true,抢占锁后就完事了;

   // 这里调用进入非公平锁的tryAcquire
	protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
	}
    // 具体代码在这里
	final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
        // 若当前无其他线程抢占锁,则抢占;
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
        //如果已获取锁的线程再调用lock()则state值+1,这里就是可重入的原理
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
        // 都不是则返回false
            return false;
        }

第二步、addWaiter

创建队列的节点,首先就先new出来一个节点,由于当前队列没有节点,因此进入enq()方法;

enq方法插入节点是死循环:
第一次循环,由于tail为空,他先创建一个空的node节点,作为头节点,此时waitStatus=0,然后将head指向该头节点,并将tail指针也指向head;

第二次循环,他将待插入node节点(线程B)的前置指针指向tail指向的节点(头节点),然后CAS将tail指向当前待插入节点(线程B),再让原来的tail指向的节点(头节点)的next域指向当前节点,这样就完成了节点(线程B)插入队尾,完成链式结构,跳出循环;
在这里插入图片描述

private Node addWaiter(Node mode) {
   	// 创建一个节点 mode
       Node node = new Node(Thread.currentThread(), mode);
       // Try the fast path of enq; backup to full enq on failure
       Node pred = tail;
    // 刚开始tail是null,如果tail有值了就将node插入队尾;
       if (pred != null) {
           node.prev = pred;
           if (compareAndSetTail(pred, node)) {
               pred.next = node;
               return node;
           }
       }
    // 若队列为空,则插入节点
       enq(node);
       return node;
   }


	private Node enq(final Node node) {
        for (;;) { // 死循环
            Node t = tail;
            if (t == null) { // 初始下tail为null,因此创建一个头节点
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;// 第二次循环,队列不为空,就将该节点插入队尾
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }

第三步:aquireQueued

这个方法依旧是死循环。
第一次循环:首先predecessor()取出的就是前置节点,p就是链表中的头节点,然后进入判断,当前确实是头节点,然后再次尝试tryAcquire(),由于线程A并没有释放锁,因此,只能进入shouldParkAfterFailedAcquire()方法;

第二次循环,再次进入shouldParkAfterFailedAcquire(),这一次由于ws=-1,因此返回true,并进入parkAndCheckInterrupt()方法;这里会调用LockSupport.park()将线程挂起,此刻线程B就阻塞再这里了。
在这里插入图片描述

final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            final Node p = node.predecessor();//获取节点的前置节点,线程B获取到的是头节点
            if (p == head && tryAcquire(arg)) {//由于线程A占用,尝试获取失败
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())// 线程B会进入这里
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}


private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    int ws = pred.waitStatus;// 头节点的waitStatus=0
    if (ws == Node.SIGNAL)// -1
        return true;
    if (ws > 0) {
        do {
            node.prev = pred = pred.prev;
        } while (pred.waitStatus > 0);
        pred.next = node;
    } else {
        compareAndSetWaitStatus(pred, ws, Node.SIGNAL);// 将头节点的waitStatus设置成-1
    }
    return false;
}

private final boolean parkAndCheckInterrupt() {
    LockSupport.park(this);
    return Thread.interrupted();
}

七:非公平锁解锁的具体流程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/111708.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

抛开八股——实际业务下如何设计缓存与数据库一致性解决方案

前言 对于缓存与数据库一致性的八股文也是老生常谈了&#xff0c;但是所谓没有最好的方案&#xff0c;只有最合适的方案&#xff0c;如果我们一味的去硬啃八股文&#xff0c;很容易就丧失了对于业务的基本分析能力&#xff0c;更别说针对业务来设计出合理合适的解决方案&#x…

Flutter笔记:完全基于Flutter绘图技术绘制一个精美的Dash图标(下)

Flutter笔记 完全基于Flutter绘图技术绘制一个精美的Dart吉祥物Dash 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/arti…

2015年亚太杯APMCM数学建模大赛A题海上丝绸之路发展战略的影响求解全过程文档及程序

2015年亚太杯APMCM数学建模大赛 A题 海上丝绸之路发展战略的影响 原题再现 一带一路不是实体或机制&#xff0c;而是合作与发展的理念和主张。凭借现有有效的区域合作平台&#xff0c;依托中国与有关国家现有的双边和多边机制&#xff0c;利用古丝绸之路的历史象征&#xff0…

如何看待将本增效?

如何看待将本增效&#xff1f; 么是降本增效&#xff1f;就是公司里&#xff0c;增进收益的动作要多做&#xff0c;无效的动作要少做&#xff0c;甚至不做。什么叫有效&#xff1f;回到公司的经营目标上去&#xff0c;企业的管理就是目标管理。降本&#xff0c;需要卓越运营&a…

reese84

网址:https://beta.makeabooking.flyscoot.com/ 这个基本上会在航空网站上出现&#xff0c;国内的我也没见过&#xff0c;然后这个是我很早很早之前的老友分享的&#xff0c;然后昨天花时间去看了一下&#xff0c;之前经常听其他大佬说&#xff0c;但是我也出来没遇见过。 感觉…

损坏的视频不能观看,还能修复吗?

3-1 在日常的生活或者工作中&#xff0c;特别是做摄像工作的人&#xff0c;有一定的概率会遇到损坏的视频文件&#xff0c;比如相机突然断电、无人机炸机等&#xff0c;都有可能导致保存的视频文件损坏。 如果遇到这种情况&#xff0c;该如何修复这种损坏的视频文件&#xff…

Java入门必刷的基础题1(八道)

目录 1. 第一题 2. 判定一个数字是否是素数 3. 打印 1 - 100 之间所有的素数 4. 输出 1000 - 2000 之间所有的闰年 5. 输出乘法口诀表 6. 求两个正整数的最大公约数 7. 求二进制中 1 的个数 8.分别输出二进制中的奇数位和偶数位 下面的源码大多只有方法体&#xff0c;需…

k8s资源对象--pod

创建pod: kubectl get pod cp test_pod_1.yaml nginx_pod.yaml cah 查看详细信息&#xff1a; pod的状态处于pending可能的原因&#xff1a;一个或多个没有运行 由于当前所有节点没有可用节点&#xff08;所有节点资源不足&#xff0c;所有节点&#xff09; 查看所有&…

免费好用的DNS在线工具,DNS记录、域名被墙、Whois轻松查询

在互联网的世界中&#xff0c;DNS是一种非常重要的存在&#xff0c;它们是域名与IP地址之间的桥梁&#xff0c;用于实现用户访问网站。我们在搭建网站时&#xff0c;经常会用到一些DNS工具&#xff0c;以便了解网站的DSN情况。DNS记录查询工具、域名被墙检测工具以及Whois域名信…

【WinForm详细教程四】WinForm中的ProgressBar 、ImageList和ListView控件

文章目录 1.ProgressBar2. ImageList3.ListView控件 1.ProgressBar 用于显示某个操作的进度。 属性&#xff1a; Value: 表示当前进度条的值&#xff0c;其范围由Min和Max决定。Step: 设置每次调用PerformStep()方法时增加的步长。MarqueeAnimationSpeed: 在Style设置为Marq…

【JVM】垃圾回收机制

【JVM】垃圾回收机制 文章目录 【JVM】垃圾回收机制1. 方法区的回收2. 堆的回收2.1 引用计数法2.2 可达性分析算法 3. 对象引用3.1 强引用3.2 软引用3.3 弱引用3.4 虚引用和终结器引用 4. 垃圾回收算法4.1 标记清除算法4.2 复制算法4.3 标记整理算法4.4 分代垃圾回收算法 5. 垃…

AI视频换脸软件,无缝衔接视频可过原创【换脸脚本+使用教程】 - 沉睡者IT

手机最新ai换脸技术来了 支持换视频 一天发一百个做品都是原创 轻松上热门 AI视频换脸怎么做&#xff1f;随着人工智能技术的不断发展&#xff0c;AI视频换脸技术也越来越成熟&#xff0c;现在有越来越多的人将这项技术融入到自己的生活当中。 通过AI视频换脸技术&#xff0c…

Python---排序算法

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 前言 Python中的排序算法用于对数据进行排序。排序算法可以使数据按照一定的规则进行排列&#xff0c;以便于数据的查找、统计、比较等操作。在数据分析、机器学习、图形计算等领域&#xff0c…

Java模块化应用实践之精简JRE | 京东云技术团队

导语 Java9及以后的版本引入了模块化特性&#xff0c;但是直到今天JDK21都发布了&#xff0c;依然没有被大量使用起来&#xff0c;那么这个特性就真的没啥意义了吗&#xff1f; 别忘了&#xff0c;Java本身可是把模块化做到了极致的&#xff0c;所以可以利用这个特性对JRE本身…

众和策略:承诺10年不减持转让!这家造车新势力拼了!

当地时间10月31日&#xff0c;美股三大股指收高&#xff0c;但在10月份均录得跌幅。其间&#xff0c;道指涨0.38%&#xff0c;10月份累计下跌1.36%&#xff1b;标普指数涨0.65%&#xff0c;10月份累计下跌2.2%&#xff1b;纳斯达克指数涨0.48%&#xff0c;10月份累计下跌2.78%。…

Debug技巧-不启用前端访问后端

在日常开发中&#xff0c;我们经常会遇到各种问题需要调试&#xff0c;前后端都启动需要耗费一定的时间和内存&#xff0c;方便起见&#xff0c;可以直接用抓包数据访问后端&#xff0c;这里我们需要用到Postman或者ApiFox 抓包数据 在系统前台触发后端请求&#xff0c;在控制…

在Maven中发布项目到Nexus私有服务器

一、测试环境 Sonatype Nexus 3.61.0-02 Maven 3.9.2 二、环境配置 2.1找到maven的配置文件 2.2添加私有仓库账户密码 <servers><server><id>nexus</id><username>admin</username><password>admin</password></server&…

Spring IOC - ConfigurationClassPostProcessor源码解析

上文提到Spring在Bean扫描过程中&#xff0c;会手动将5个Processor类注册到beanDefinitionMap中&#xff0c;其中ConfigurationClassPostProcessor就是本文将要讲解的内容&#xff0c;该类会在refresh()方法中通过调用invokeBeanFactoryPosstProcessors(beanFactory)被调用。 5…

(11月4日)GBASE南大通用 x openGauss Meetup,欢迎报名

由openGauss社区、天津南大通用数据技术股份有限公司主办&#xff0c;伟仕佳杰科技有限公司、神州数码&#xff08;中国&#xff09;有限公司协办的“GBASE南大通用 x openGauss Meetup”活动将于2023年11月4日&#xff08;周六&#xff09;在合肥市高新区云飞路66号天源迪科科…

resource manager OCB structure(iofunc_ocb_t) 扩展实例

文章目录 前言一、OCB structure(iofunc_ocb_t) 是什么二、OCB structure(iofunc_ocb_t) 扩展实例1.OCB structure(iofunc_ocb_t) 扩展后的使用实例总结参考资料前言 本文主要介绍如何对qnx系统下的resource manager OCB structure(iofunc_ocb_t) 数据结构进行扩展 软件环境:…