Elasticsearch:使用 Elasticsearch 进行词汇和语义搜索

作者:PRISCILLA PARODI

在这篇博文中,你将探索使用 Elasticsearch 检索信息的各种方法,特别关注文本:词汇 (lexical) 语义搜索 (semantic search)

使用 Elasticsearch 进行词汇和语义搜索

搜索是根据你的搜索查询或组合查询查找最相关信息的过程,相关搜索结果是与这些查询最匹配的文档。 尽管存在与搜索相关的多种挑战和方法,但最终目标仍然相同,即找到问题的最佳答案。

考虑到这一目标,在这篇博文中,我们将探索使用 Elasticsearch 检索信息的不同方法,特别关注文本搜索:词汇语义搜索

先决条件

为了实现这一目标,我们将提供 Python 示例,演示在为模拟电子商务产品信息而生成的数据集上的各种搜索场景。

该数据集包含 2,500 多种产品,每种产品都有描述。 这些产品分为 76 个不同的产品类别,每个类别包含不同数量的产品,如下所示:

树形图可视化 - category.keyword(产品类别)的前 22 个值

对于设置,你将需要:

  • Python 3.6 或更高版本
  • Elastic Python 客户端
  • Elastic 8.8 或更高版本部署,具有 8GB 内存机器学习节点
  • Elastic Learned Sparse EncodeR 模型已预加载到 Elastic 中并在你的部署中安装并启动

我们将使用 Elastic Cloud,可以免费试用。

除了本博文中提供的搜索查询之外,Python notebook 还将指导你完成以下过程:

  • 使用 Python 客户端建立与我们的 Elastic 部署的连接
  • 将文本嵌入模型加载到 Elasticsearch 集群中
  • 使用用于索引特征向量和密集向量的映射创建索引。
  • 使用推理处理器创建摄取管道以进行文本嵌入和文本扩展

词汇搜索 - 稀疏检索

Elasticsearch 基于文本查询对文档相关性进行排名的经典方式是使用 BM25 模型的 Lucene 实现,BM25 模型是一种用于词法搜索的稀疏模型 (sparse model for lexical search)。 此方法遵循传统的文本搜索方法,寻找精确的术语匹配。

为了使这种搜索成为可能,Elasticsearch 通过执行文本分析将文本字段数据转换为可搜索的格式。

文本分析由分析器执行,分析器是一组规则,用于管理提取相关标记进行搜索的过程。 分析器必须恰好有一个分词器。 分词器接收字符流并将其分解为单独的标记(通常是单独的单词),如下例所示:

词汇搜索的字符串标记化

#Performs text analysis on a string and returns the resulting tokens.

# Define the text to be analyzed
text = "Comfortable furniture for a large balcony"

# Define the analyze request
request_body = {
  "analyzer": "standard",
  "text": text
}

# Perform the analyze request
response = client.indices.analyze(analyzer=request_body["analyzer"], text=request_body["text"])

# Extract and display the analyzed tokens
tokens = [token["token"] for token in response["tokens"]]
print("Analyzed Tokens:", tokens)

上述代码输出:

Analyzed Tokens: ['comfortable', 'furniture', 'for', 'a', 'large', 'balcony']

在此示例中,我们使用默认分析器,即标准分析器,它适用于大多数用例,因为它提供基于英语语法的分词化。 标记化可以对各个术语进行匹配,但每个分词仍然按字面意思进行匹配。

如果你想个性化你的搜索体验,你可以选择不同的内置分析器。 例如,通过更新代码以使用停止分析器,它将在任何非字母字符处将文本分解为标记,并支持删除停止词。

...
# Define the analyze request
request_body = {
  "analyzer": "stop",
  "text": text
}
...

上面的输出为:

Analyzed Tokens: ['comfortable', 'furniture', 'large', 'balcony']

当内置分析器不能满足你的需求时,你可以创建自定义分析器,它使用零个或多个字符过滤器、分词器和零个或多个 token 过滤器的适当组合。

"analyzer":  {

  "my_analyzer": {

    "type": "custom", #For custom analyzers, use a type of custom or omit the type parameter.

    "tokenizer": "standard", #Built-in or customized tokenizer

    "filter": ["lowercase", "synonym"] #Built-in or customized token filters
  }
}

在上面结合了分词器和分词过滤器的示例中,文本在被 synonym token filter 处理之前将被 lowercase filter 转为小写。

如果你想了解更多关于 analyzer 方面的知识,请参阅文章 “Elastic:开发者上手指南” 中的 “分词器介绍” 部分。

词汇匹配 - Lexical Matching

BM25 将根据术语的频率及其重要性来衡量文档与给定搜索查询的相关性。

下面的代码执行 match 查询,考虑 “ecommerce-search” 索引中的 “decription” 字段值和搜索查询 “Comfortable furniture for a large balcony"”,搜索最多两个文档。

细化被视为与该查询匹配的文档的标准可以提高精度。 然而,更具体的结果是以降低对变化的容忍度为代价的。

# BM25

response = client.search(size=2,
index="ecommerce-search",
query= {
  "match": {
    "description" : {  
      "query": "Comfortable furniture for a large balcony",
      "analyzer": "stop"
    }
  }
}
)

hits = response['hits']['hits']

if not hits:
  print("No matches found")

else:
  for hit in hits:
    score = hit['_score']
    product = hit['_source']['product']
    category = hit['_source']['category']
    description = hit['_source']['description']
    print(f"\nScore: {score}\nProduct: {product}\nCategory: {category}\nDescription: {description}\n")

输出为:

Score: 15.607948
Product: Barbie Dreamhouse
Category: Toys
Description: is a classic Barbie playset with multiple rooms, furniture, a large balcony, a pool, and accessories. It allows kids to create their dream Barbie world.

Score: 9.137739
Product: Comfortable Rocking Chair
Category: Indoor Furniture
Description: enjoy relaxing moments with this comfortable rocking chair. Its smooth motion and cushioned seat make it an ideal piece of furniture for unwinding.

通过分析输出,最相关的结果是 “Toys” 类别中的 “Barbie Dreamhouse” 产品,其描述高度相关,因为它包括术语 “furniture”、“large” 和 “balcony”,这是 唯一在描述中包含 3 个术语与搜索查询相匹配的产品,该产品也是唯一在描述中包含术语“阳台”的产品。

第二个最相关的产品是归类为 “Indoor Furniture” 的 “Comfortable Rocking Chair”,其描述包括术语 “comfortable” 和 “furniture”。 数据集中只有 3 个产品与此搜索查询的至少 2 个术语匹配,该产品就是其中之一。

Comfortable” 出现在 105 个产品的描述中,“furniture” 出现在 4 个不同类别的 4 个产品的描述中:ToysIndoor Furniture, Outdoor Furniture 和 “Cat Supplies & Toys”。

正如你所看到的,考虑到该查询,最相关的产品是玩具,第二相关的产品是室内家具。 如果你想要有关分数计算的详细信息,以了解为什么这些文档是匹配的,你可以将 explain __query 参数设置为true。

尽管这两个结果都是最相关的结果,但考虑到该数据集中的文档数量和术语的出现次数,查询 “Comfortable Furniture for a Large Baladal” 背后的意图是搜索实际大阳台的家具,但是不包括其他,玩具和室内家具。

词汇搜索相对简单且快速,但它有局限性,因为在不一定知道用户的意图和查询的情况下,并不总是可能知道所有可能的术语和同义词。 自然语言使用中的一个常见现象是词汇不匹配。 研究表明,平均而言,80% 的情况下,不同的人(同一领域的专家)会对同一事物有不同的命名。

这些限制促使我们寻找其他包含语义知识的评分模型。 基于 Transformer 的模型擅长处理自然语言等顺序输入标记,通过考虑文档和查询的数学表示来捕获搜索的潜在含义。 这允许对文本进行密集的、上下文感知的向量表示,为语义搜索提供动力,这是一种查找相关内容的精细方法。

语义搜索-密集检索

在这种情况下,将数据转换为有意义的向量值后,将利用 k 最近邻 (kNN) 搜索算法来查找数据集中与查询向量最相似的向量表示。 Elasticsearch 支持两种 kNN 搜索方法:精确 brute--fource kNN 和近似 kNN(也称为 ANN)。

Brute-force kNN 可以保证准确的结果,但不能很好地适应大型数据集。 近似 kNN 通过牺牲一些精度来提高性能,从而有效地找到近似最近邻。

借助 Lucene 对 kNN 搜索和密集向量索引的支持,Elasticsearch 充分利用了分层可导航小世界 (HNSW) 算法,该算法在各种 ANN 基准数据集上展示了强大的搜索性能。 可以使用以下示例代码在 Python 中执行近似 kNN 搜索。

使用近似 kNN 进行语义搜索

# KNN - approximate kNN

response = client.search(index='ecommerce-search', size=2,
knn={
  "field": "description_vector.predicted_value",
  "k": 50, # Number of nearest neighbors to return as top hits.
#The optimal value of k is dependent on the data. It can vary in different scenarios.

  "num_candidates": 500, # Number of nearest neighbor candidates to consider per shard.

#Increasing num_candidates tends to improve the accuracy of the final k results.

  "query_vector_builder": { # Object indicating how to build a query_vector. kNN search enables you to perform semantic search by using a previously deployed text embedding model, the steps for this process are demonstrated in the Python notebook.
    "text_embedding": { 
      "model_id": "sentence-transformers__all-mpnet-base-v2", # Text embedding model id
      "model_text": "Comfortable furniture for a large balcony" # Query
    }
  }
}
)

for hit in response['hits']['hits']:
        
  score = hit['_score']
  product = hit['_source']['product']
  category = hit['_source']['category']
  description = hit['_source']['description']
  print(f"\nScore: {score}\nProduct: {product}\nCategory: {category}\nDescription: {description}\n")

考虑到产品数据集中 “description” 字段的嵌入,此代码块使用 Elasticsearch 的 kNN 返回最多两个产品,其描述类似于 “Comfortable furniture for a large balcony” 的向量化查询 (query_vector_build)。

产品嵌入先前是在摄取管道中生成的,其中包含 “all-mpnet-base-v2” 文本嵌入模型的推理处理器,用于推断管道中摄取的数据。

该模型是根据使用 “sentence_transformers.evaluation” 对预训练模型进行评估而选择的,其中在训练期间使用不同的类别来评估模型。 根据 Sentence-Transformers 排名,“all-mpnet-base-v2” 模型展示了最佳的平均性能,并且还在大规模文本嵌入基准 (MTEB) 排行榜上获得了有利的位置。 该模型预先训练了 microsoft/mpnet-base 模型并在 1B 句子对数据集上进行了微调,它将句子映射到 768 维密集向量空间。

或者,还有许多其他模型可供使用,特别是那些针对特定领域数据进行微调的模型。

上面代码的输出为:

Score: 0.79207325
Product: Patio Sofa Set with Ottoman
Category: Outdoor Furniture
Description: is a versatile and comfortable patio sofa set, including a sofa, ottoman, and coffee table, great for outdoor lounging.

Score: 0.7836937
Product: Patio Sofa Set with Canopy
Category: Outdoor Furniture
Description: is a luxurious and comfortable patio sofa set with a canopy, providing shade and style for outdoor lounging.

输出可能会根据所选模型、滤波器和近似 kNN 调整而有所不同。

kNN 搜索结果都属于 “Outdoor Furniture” 类别,尽管查询中没有明确提及 “outdoor”一词,这凸显了上下文中语义理解的重要性。

密集向量搜索具有以下几个优点:

  • 启用语义搜索
  • 处理非常大的数据集的可扩展性
  • 灵活处理各种数据类型

然而,密集向量搜索也面临着其自身的挑战:

  • 为你的用例选择正确的嵌入模型
  • 选择模型后,可能需要微调模型以优化特定领域数据集的性能,这个过程需要领域专家的参与
  • 此外,索引高维向量的计算成本可能很高

语义搜索 - 学习稀疏检索 (Learned Sparse Retrieval)

让我们探索另一种方法:学习稀疏检索,这是执行语义搜索的另一种方法。

作为稀疏模型,它利用 Elasticsearch 基于 Lucene 的倒排索引,该索引得益于数十年的优化。 然而,这种方法不仅仅是简单地使用 BM25 等词汇评分函数添加同义词。 相反,它使用更深入的语言规模知识来整合学习的关联,以优化相关性。

通过扩展搜索查询以包含原始查询中不存在的相关术语,Elastic Learned Sparse Encoder 改进了稀疏向量嵌入,如下面的示例所示。

使用 Elastic Learned Sparse Encoder 进行稀疏向量搜索

# Elastic Learned Sparse Encoder

response = client.search(index='ecommerce-search', size=2,
query={
  "text_expansion": {
    "ml.tokens": {
      "model_id":"elser_model",
      "model_text":"Comfortable furniture for a large balcony"                
    }
  }
}
)

for hit in response['hits']['hits']:

  score = hit['_score']
  product = hit['_source']['product']
  category = hit['_source']['category']
  description = hit['_source']['description']
  print(f"\nScore: {score}\nProduct: {product}\nCategory: {category}\nDescription: {description}\n")

输出:

Score: 14.405318
Product: Garden Lounge Set with Side Table
Category: Garden Furniture
Description: is a comfortable and stylish garden lounge set, including a sofa, chairs, and a side table for outdoor relaxation.

Score: 14.281318
Product: Rattan Patio Conversation Set
Category: Outdoor Furniture
Description: is a stylish and comfortable outdoor furniture set, including a sofa, two chairs, and a coffee table, all made of durable rattan material.

本例中的结果包括 “Garden Furniture” 类别,该类别提供与 “Outdoor Furniture” 非常相似的产品。

通过分析 “ml.tokens”(包含学习稀疏检索生成的标记的 “rank_features” 字段),很明显,在生成的各种标记中,有些术语虽然不是搜索查询的一部分,但在含义上仍然相关,例如 “relax”(comfortable)、“sofa”(furniture)和 “outdoor”(balcony)。

下图突出显示了查询旁边的一些术语,包括带或不带术语扩展的情况。

正如所观察到的,该模型提供了上下文感知搜索,有助于缓解词汇不匹配问题,同时提供更具可解释性的结果。 当不应用特定领域的再训练时,它甚至可以超越密集向量模型。

混合搜索:结合词汇和语义搜索获得相关结果

就搜索而言,没有通用的解决方案。 这些检索方法都有其优点,但也有其挑战。 根据用例,最佳选项可能会发生变化。 通常,不同检索方法的最佳结果可以是互补的。 因此,为了提高相关性,我们将考虑结合每种方法的优点。

有多种方法可以实现混合搜索 (hybrid search),包括线性组合、为每个分数赋予权重以及倒数排名融合(RRF),其中不需要指定权重。

Elasticsearch:词汇和语义搜索的两全其美

# BM25 + Elastic Learned Sparse Encoder (Linear Combination)

response = client.search(index='ecommerce-search', size=2,

query= {
  "bool": {
    "should": [
    {
      "match": {
        "description" : {  
          "query": "A dining table and comfortable chairs for a large balcony",
          "boost": 1
        }
      }
    },                   
    {
      "text_expansion": {
        "ml.tokens": {
          "model_id": "elser_model",
          "model_text": "A dining table and comfortable chairs for a large balcony",
          "boost": 1
        }
      }
     }
    ]
  }
}
)

# The boost value is 1 for the text expansion and match query. This means that the relevance score of the results of these queries are not boosted. You can specify a boost value to give a weight to each score in the sum. The scores will be calculated as: score = boost value * match_score + boost value * text_expansion_score

for hit in response['hits']['hits']:

  score = hit['_score']
  product = hit['_source']['product']
  category = hit['_source']['category']
  description = hit['_source']['description']
  print(f"\nScore: {score}\nProduct: {product}\nCategory: {category}\nDescription: {description}\n")

在此代码中,我们使用两个值为 “A dining table and comfortable chairs for a large balcony” 的查询执行混合搜索。 我们没有使用 “furniture” 作为搜索词,而是指定我们要查找的内容,并且两个搜索都考虑相同的字段值 “description”。 排名由 BM25 和 ELSER 分数等权重的线性组合确定。

输出:

Score: 31.628141
Product: Garden Dining Set with Swivel Rockers
Category: Garden Furniture
Description: is a functional and comfortable garden dining set, including a table and chairs with swivel rockers for easy movement.

Score: 31.334227
Product: Garden Dining Set with Swivel Chairs
Category: Garden Furniture
Description: is a functional and comfortable garden dining set, including a table and chairs with swivel seats for convenience.

在下面的代码中,我们将为查询使用相同的值,但使用倒数排名融合方法结合 BM25(查询参数)和 kNN(knn 参数)的分数来对文档进行组合和排名。

# BM25 + KNN (RRF)

response = client.search(index='ecommerce-search', size=2,
query={
  "bool": {
    "should": [
    {
      "match": {
        "description": {
        "query": "A dining table and comfortable chairs for a large balcony"
        }
      }
    }
    ]
  }
},
knn={
  "field": "description_vector.predicted_value",
  "k": 50,
  "num_candidates": 500,
  "query_vector_builder": {
    "text_embedding": {
      "model_id": "sentence-transformers__all-mpnet-base-v2",
      "model_text": "A dining table and comfortable chairs for a large balcony"
    }
  }
},
rank={
  "rrf": { # Reciprocal rank fusion
    "window_size": 50, # This value determines the size of the individual result sets per query.
    "rank_constant": 20 # This value determines how much influence documents in individual result sets per query have over the final ranked result set.
  }
}
)

for hit in response['hits']['hits']:
        
  rank = hit['_rank']
  category = hit['_source']['category']
  product = hit['_source']['product']
  description = hit['_source']['description']
  print(f"\nRank: {rank}\nProduct: {product}\nCategory: {category}\nDescription: {description}\n")

RRF 功能处于技术预览阶段。 语法可能会在正式发布之前发生变化。

输出:

Rank: 1
Product: Patio Dining Set with Bench
Category: Outdoor Furniture
Description: is a spacious and functional patio dining set, including a dining table, chairs, and a bench for additional seating.

Rank: 2
Product: Garden Dining Set with Swivel Chairs
Category: Garden Furniture
Description: is a functional and comfortable garden dining set, including a table and chairs with swivel seats for convenience.

这里我们还可以使用不同的字段和值; Python notebook 中提供了其中一些示例。

正如你所看到的,使用 Elasticsearch,你可以两全其美:传统的词法搜索和向量搜索,无论是稀疏还是密集,都可以实现你的目标并找到问题的最佳答案。

如果你想继续了解此处提到的方法,这些博客可能会很有用:

  • 改进 Elastic Stack 中的信息检索:混合检索
  • Elasticsearch 中的向量搜索:设计背后的基本原理
  • 如何利用 Elastic 的向量数据库充分利用词汇和 AI 驱动的搜索
  • Elastic Learned Sparse Encoder 简介:Elastic 用于语义搜索的 AI 模型
  • 改进 Elastic Stack 中的信息检索:引入 Elastic Learned Sparse Encoder,我们的新检索模型

Elasticsearch 提供向量数据库以及构建向量搜索所需的所有工具:

  • Elasticsearch向量数据库
  • Elastic 的向量搜索用例

结论:

在这篇博文中,我们探索了使用 Elasticsearch 检索信息的各种方法,特别关注文本、词汇和语义搜索。 为了演示这一点,我们提供了 Python 示例,展示了使用包含电子商务产品信息的数据集的不同搜索场景。

我们回顾了 BM25 的经典词汇搜索,并讨论了它的优点和挑战,例如词汇不匹配。 我们强调了结合语义知识来克服这个问题的重要性。 此外,我们讨论了密集向量搜索,它支持语义搜索,并讨论了与这种检索方法相关的挑战,包括索引高维向量时的计算成本。

另一方面,我们提到稀疏向量的压缩效果非常好。 因此,我们讨论了 Elastic 的学习稀疏编码器,它将搜索查询扩展为包含原始查询中不存在的相关术语。

在搜索方面,没有一种万能的解决方案。 每种检索方法都有其优点和挑战。 因此,我们还讨论了混合搜索的概念。

正如你所看到的,使用 Elasticsearch,你可以两全其美:传统的词法搜索和向量搜索!

准备好开始了吗? 检查可用的 Python notebook 并开始免费试用 Elastic Cloud。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/110731.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Java 进阶篇】Java BeanUtils 使用详解

Java中的BeanUtils是一组用于操作JavaBean的工具,它允许你在不了解JavaBean的具体内部结构的情况下,访问和修改其属性。本文将详细介绍Java BeanUtils的使用,包括如何获取和设置JavaBean的属性,复制属性,以及如何处理嵌…

Prometheus接入AlterManager配置钉钉告警(基于K8S环境部署)

文章目录 一、钉钉群创建报警机器人二、安装Webhook-dingtalk插件三、配置Webhook-dingtalk插件对接钉钉群四、配置AlterManager告警发送至Webhook-dingtalk五、Prometheus接入AlterManager配置六、部署PrometheusAlterManager(放到一个Pod中)七、测试告警 注意:请基…

使用Nokogiri和OpenURI库进行HTTP爬虫

目录 一、Nokogiri库 二、OpenURI库 三、结合Nokogiri和OpenURI进行爬虫编程 四、高级爬虫编程 1、并发爬取 2、错误处理和异常处理 3、深度爬取 总结 在当今的数字化时代,网络爬虫已经成为收集和处理大量信息的重要工具。其中,Nokogiri和OpenUR…

深入理解数据结构(2)——用数组实现队列

数组是一种数据结构,队列也是一种数据结构。它们都是由基础的语法实现的。 如果一个数据结构可以用另外的数据结构来实现,那么可以有力的证明——“数据结构是一种思想”,是一种讲语法组合起来实现某种功能的手段 “整体大于局部” 一、队列的…

SpringSecurity6 | HelloWorld入门案例

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏: Java从入门到精通 ✨特色专栏&#xf…

腾讯云优惠券如何领取?详细教程来了!

腾讯云优惠券是腾讯云为广大用户提供的优惠福利,包括代金券和折扣券,大家可以通过领取优惠券,在购买腾讯云产品时享受优惠。本文将为大家介绍如何领取腾讯云优惠券,以及领取后的使用规则。 一、腾讯云优惠券领取方法 腾讯云优惠券…

视频讲解|考虑源荷两侧不确定性的含风电电力系统低碳调度

目录 1 主要内容 2 讲解视频 1 主要内容 本次程序讲解对应程序链接考虑源荷两侧不确定性的含风电电力系统低碳调度,主要实现了基于模糊机会约束的源荷两侧不确定性对含风电电力系统低碳调度的影响,将源荷不确定性采用清晰等价类进行处理。部分讲解重点…

11.与JavaScript深入交流-[js一篇通]

文章目录 1.变量的使用1.1基本用法1.2理解 动态类型 2.基本数据类型2.1number 数字类型2.1.1数字进制表示2.1.2特殊的数字值 2.2string 字符串类型2.2.1基本规则2.2.2转义字符2.2.3求长度2.2.4字符串拼接 2.3boolean 布尔类型2.4undefined 未定义数据类型2.5null 空值类型 3.运…

原生JS 表格列拖拽 适用JqGrid

js $(function () {var d1 new dragTable();d1.init({tabel: .drag-table}); })function dragTable() {this.disX 0; // 相对按下的位置移动的距离this.outX 0; // 鼠标按下的点到大盒子边上的距离this.lanX 0; // 拖动到的位置this.$createDiv null;this.$createDivBg …

缓存和数据库一致性解决方案

引入缓存提高性能 如果你的业务处于起步阶段,流量非常小,那无论是读请求还是写请求,直接操作数据库即可,这时你的架构模型是这样的: 但随着业务量的增长,你的项目请求量越来越大,这时如果每次都…

rust std

目录 一,std基本数据结构 1,std::option 2,std::result 二,std容器 1,vector 三,std算法 1,排序 2,二分 (1)vector二分 (2)…

Yusi技术资讯博客wordpress模板

Yusi技术资讯博客wordpress模板,从第一感觉看上去,两栏结构直接将网站的内容展现,以红白灰色调搭配,一种低调协调的风格,喜欢该wordpress主题的朋友可以下载试试。 下载地址:https://bbs.csdn.net/topics/…

【ChatGPT系列】ChatGPT:创新工具还是失业威胁?

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…

草莓熊代码

话不多说直接上代码 如果需要exe文件电脑可以不依赖环境直接运行请评论或者私信 注意: 不需要年月日显示 注释 879-894 行不需要雪花显示 注释 895-908 行不需要礼物显示 注释 771 行653行 可以修改 祝你节日快乐内容657行 可以修改 草莓熊 内容修改程序标题 第 16 行# -*- co…

C# Onnx DBNet 检测条形码

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Numerics; using System.Runtime.InteropServices.…

FPGA时序分析与约束(9)——主时钟约束

一、时序约束 时序引擎能够正确分析4种时序路径的前提是,用户已经进行了正确的时序约束。时序约束本质上就是告知时序引擎一些进行时序分析所必要的信息,这些信息只能由用户主动告知,时序引擎对有些信息可以自动推断,但是推断得到…

PHP的Excel导出与导入

下载地址(注意php版本大于7.3可能会报错) GitHub - PHPOffice/PHPExcel: ARCHIVED 解压 1、导出 Excel $data[[name>a,age>11],[name>b,age>22],[name>d,age>33], ]; $fileds["name">"名称","age"…

在Java和PostgreSQL枚举之间进行转换的通用方法

枚举类型(enum)是一种方便的数据类型,允许我们指定一个常量列表,对象字段或数据库列可以设置为该列表中的值。 枚举的美妙之处在于我们可以通过提供人类可读格式的枚举常量来确保数据完整性。因此,Java和PostgreSQL原…

详解—数据结构《树和二叉树》

目录 一.树概念及结构 1.1树的概念 1.2树的表示 二.二叉树的概念及结构 2.1概念 2.2二叉树的特点 2.3现实中的二叉树 2.4数据结构中的二叉树 2.5 特殊的二叉树 2.6二叉树的存储结构 2.6.1二叉树的性质 2.6.2 顺序结构 2.6.3链式存储 三. 二叉树的链式结构的遍历 …

【广州华锐视点】节省成本,提升效果!教你快速搭建一个元宇宙3D虚拟展厅!

在当今这个数字化的时代,拥有一个专业的网站或者小程序已经成为了企业展示形象、推广产品的重要手段。然而,对于许多小企业来说,高昂的开发费用和复杂的技术门槛往往成为了他们实现这一目标的最大阻碍。那么,有没有一种方式&#…