Prometheus接入AlterManager配置钉钉告警(基于K8S环境部署)

文章目录

    • 一、钉钉群创建报警机器人
    • 二、安装Webhook-dingtalk插件
    • 三、配置Webhook-dingtalk插件对接钉钉群
    • 四、配置AlterManager告警发送至Webhook-dingtalk
    • 五、Prometheus接入AlterManager配置
    • 六、部署Prometheus+AlterManager(放到一个Pod中)
    • 七、测试告警

注意:请基于 Prometheus+Grafana监控K8S集群(基于K8S环境部署)文章之上做本次实验。

一、钉钉群创建报警机器人

注意:由于钉钉自从 2023-08-24日启,只有钉钉内部群才可以添加机器人,我这边没有可实验的内部群,所以我这边使用之前申请好的机器人进行实验,申请钉钉机器人大概流程如下:

流程:群设置 > 机器人 > 添加机器人 > 自定义 > 添加

img

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

总共需要保存两项,我们后续会用到:
1、加签后的秘钥
2、webhook地址

如果没有钉钉群,或者不方便创建钉钉群做测试的,下面我提供钉钉群信息:
加群连接:点击加入Prometheus告警测试群
加签秘钥:SECfbe824b46245364e321d2b083ceb5606a53f2faedc69161f5391b80316f9094c
Webhook:https://oapi.dingtalk.com/robot/send?access_token=7e46e35df484997705fd0d95c455425eec593c730755ef5d3b770282565ef9b9

二、安装Webhook-dingtalk插件

注意:Webhook-dingtalk插件使用传统方式部署,非容器化!

1、安装webhook-dingtalk插件

wget https://github.com/timonwong/prometheus-webhook-dingtalk/releases/download/v2.1.0/prometheus-webhook-dingtalk-2.1.0.linux-amd64.tar.gz

tar zxf prometheus-webhook-dingtalk-2.1.0.linux-amd64.tar.gz 
mv prometheus-webhook-dingtalk-2.1.0.linux-amd64 /usr/local/webhook-dingtalk

2、配置webhook-dingtalk使用systemd管理

cp /usr/local/webhook-dingtalk/config.example.yml /usr/local/webhook-dingtalk/config.yml
vim /usr/lib/systemd/system/webhook.service

[Unit]
Description=Prometheus-Server
After=network.target

[Service]
ExecStart=/usr/local/webhook-dingtalk/prometheus-webhook-dingtalk --config.file=/usr/local/webhook-dingtalk/config.yml
User=root

[Install]
WantedBy=multi-user.target

3、启动 && 开机自启

systemctl enable webhook.service --now
systemctl status webhook.service 

4、验证,查看端口是否启动

netstat -anput |grep 8060

三、配置Webhook-dingtalk插件对接钉钉群

1、 Webhook-dingtalk配置相对比较简单,只改以下三处即可,如下图:
加签秘钥、webhook地址是咱们在钉钉创建机器人时获取的!

vim /usr/local/webhook-dingtalk/config.yml

templates:
  - /usr/local/webhook-dingtalk/template.tmpl   # 告警模板路径

targets:
  webhook1:
    url: https://oapi.dingtalk.com/robot/send?access_token=7e46e35df484997705fd0d95c455425eec593c730755ef5d3b770282565ef9b9   # webhook地址
    secret: SECfbe824b46245364e321d2b083ceb5606a53f2faedc69161f5391b80316f9094c # 加签秘钥

2、添加钉钉报警模板

vim /usr/local/webhook-dingtalk/template.tmpl

{{ define "__subject" }}
[{{ .Status | toUpper }}{{ if eq .Status "firing" }}:{{ .Alerts.Firing | len }}{{ end }}]
{{ end }}
 
 
{{ define "__alert_list" }}{{ range . }}
---
{{ if .Labels.owner }}@{{ .Labels.owner }}{{ end }}
 
**告警主题**: {{ .Annotations.summary }}

**告警类型**: {{ .Labels.alertname }}
 
**告警级别**: {{ .Labels.severity }} 
 
**告警主机**: {{ .Labels.instance }} 
 
**告警信息**: {{ index .Annotations "description" }}
 
**告警时间**: {{ dateInZone "2006.01.02 15:04:05" (.StartsAt) "Asia/Shanghai" }}
{{ end }}{{ end }}
 
{{ define "__resolved_list" }}{{ range . }}
---
{{ if .Labels.owner }}@{{ .Labels.owner }}{{ end }}

**告警主题**: {{ .Annotations.summary }}

**告警类型**: {{ .Labels.alertname }} 
 
**告警级别**: {{ .Labels.severity }}
 
**告警主机**: {{ .Labels.instance }}
 
**告警信息**: {{ index .Annotations "description" }}
 
**告警时间**: {{ dateInZone "2006.01.02 15:04:05" (.StartsAt) "Asia/Shanghai" }}
 
**恢复时间**: {{ dateInZone "2006.01.02 15:04:05" (.EndsAt) "Asia/Shanghai" }}
{{ end }}{{ end }}
 
 
{{ define "default.title" }}
{{ template "__subject" . }}
{{ end }}
 
{{ define "default.content" }}
{{ if gt (len .Alerts.Firing) 0 }}
**====侦测到{{ .Alerts.Firing | len  }}个故障====**
{{ template "__alert_list" .Alerts.Firing }}
---
{{ end }}
 
{{ if gt (len .Alerts.Resolved) 0 }}
**====恢复{{ .Alerts.Resolved | len  }}个故障====**
{{ template "__resolved_list" .Alerts.Resolved }}
{{ end }}
{{ end }}
 
 
{{ define "ding.link.title" }}{{ template "default.title" . }}{{ end }}
{{ define "ding.link.content" }}{{ template "default.content" . }}{{ end }}
{{ template "default.title" . }}
{{ template "default.content" . }}

3、重启

systemctl restart webhook
systemctl status webhook

四、配置AlterManager告警发送至Webhook-dingtalk

1、创建AlterManager ConfigMap资源清单

vim alertmanager-cm.yaml
--- 
kind: ConfigMap
apiVersion: v1
metadata:
  name: alertmanager
  namespace: prometheus
data:
  alertmanager.yml: |-
    global:
      resolve_timeout: 1m
      smtp_smarthost: 'smtp.qq.com:25'
      smtp_from: '1790168505@qq.com'
      smtp_auth_username: '1790168505@qq.com'
      smtp_auth_password: 'KCGZFUDCCKMNZXXX'
      smtp_require_tls: false
    route:
      group_by: [alertname]
      group_wait: 10s
      group_interval: 10s
      repeat_interval: 10m
      receiver: dingding.webhook1   # 告警发送到dingding.webhook1路由
    receivers:
    - name: 'dingding.webhook1'  # 定义dingding.webhook1路由
      webhook_configs:
      - url: 'http://16.32.15.200:8060/dingtalk/webhook1/send' # webhook-dingtalk访问的IP+端口
        send_resolved: true

执行YAML资源清单:

kubectl apply -f alertmanager-cm.yaml

五、Prometheus接入AlterManager配置

1、创建新的Prometheus ConfigMap资源清单,添加监控K8S集群告警规则

vim prometheus-alertmanager-cfg.yaml
---
kind: ConfigMap
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus-config
  namespace: prometheus
data:
  prometheus.yml: |
    rule_files: 
    - /etc/prometheus/rules.yml   # 告警规则位置
    alerting:
      alertmanagers:
      - static_configs:
        - targets: ["localhost:9093"] # 接入AlterManager
    global:
      scrape_interval: 15s
      scrape_timeout: 10s
      evaluation_interval: 1m
    scrape_configs:
    - job_name: 'kubernetes-node'
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - source_labels: [__address__]
        regex: '(.*):10250'
        replacement: '${1}:9100'
        target_label: __address__
        action: replace
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
    - job_name: 'kubernetes-node-cadvisor'
      kubernetes_sd_configs:
      - role:  node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
    - job_name: 'kubernetes-apiserver'
      kubernetes_sd_configs:
      - role: endpoints
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
        action: keep
        regex: default;kubernetes;https
    - job_name: 'kubernetes-service-endpoints'
      kubernetes_sd_configs:
      - role: endpoints
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
        action: replace
        target_label: __scheme__
        regex: (https?)
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
        action: replace
        target_label: __address__
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        action: replace
        target_label: kubernetes_name 
    - job_name: 'kubernetes-pods'    # 监控Pod配置,添加注解后才可以被发现
      kubernetes_sd_configs:
      - role: pod
      relabel_configs:
      - action: keep
        regex: true
        source_labels:
        - __meta_kubernetes_pod_annotation_prometheus_io_scrape
      - action: replace
        regex: (.+)
        source_labels:
        - __meta_kubernetes_pod_annotation_prometheus_io_path
        target_label: __metrics_path__
      - action: replace
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
        source_labels:
        - __address__
        - __meta_kubernetes_pod_annotation_prometheus_io_port
        target_label: __address__
      - action: labelmap
        regex: __meta_kubernetes_pod_label_(.+)
      - action: replace
        source_labels:
        - __meta_kubernetes_namespace
        target_label: kubernetes_namespace
      - action: replace
        source_labels:
        - __meta_kubernetes_pod_name
        target_label: kubernetes_pod_name
    - job_name: 'kubernetes-etcd'   # 监控etcd配置
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
        cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
        key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
      scrape_interval: 5s
      static_configs:
      - targets: ['16.32.15.200:2379']
  rules.yml: |  # K8S集群告警规则配置文件
    groups:
    - name: example
      rules:
      - alert: apiserver的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  apiserver的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: etcd的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  etcd的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: kube-state-metrics的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
          value: "{{ $value }}%"
          threshold: "80%"      
      - alert: kube-state-metrics的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
          value: "{{ $value }}%"
          threshold: "90%"      
      - alert: coredns的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
          value: "{{ $value }}%"
          threshold: "80%"      
      - alert: coredns的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
          value: "{{ $value }}%"
          threshold: "90%"      
      - alert: kube-proxy打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kube-proxy打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-schedule打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-schedule"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-schedule打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-schedule"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-apiserver"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-apiserver"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-etcd打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-etcd"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-etcd打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-etcd"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: coredns
        expr: process_open_fds{k8s_app=~"kube-dns"}  > 600
        for: 2s
        labels:
          severity: warnning 
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"
          value: "{{ $value }}"
      - alert: coredns
        expr: process_open_fds{k8s_app=~"kube-dns"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"
          value: "{{ $value }}"
      - alert: kube-proxy
        expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: scheduler
        expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager
        expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver
        expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-etcd
        expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kube-dns
        expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: HttpRequestsAvg
        expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m]))  > 1000
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"
          value: "{{ $value }}"
          threshold: "1000"   
      - alert: Pod_restarts
        expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Pod_waiting
        expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"
          value: "{{ $value }}"
          threshold: "1"   
      - alert: Pod_terminated
        expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"
          value: "{{ $value }}"
          threshold: "1"
      - alert: Etcd_leader
        expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_leader_changes
        expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_failed
        expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_db_total_size
        expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"
          value: "{{ $value }}"
          threshold: "10G"
      - alert: Endpoint_ready
        expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"
          value: "{{ $value }}"
          threshold: "1"
    - name: 物理节点状态-监控告警
      rules:
      - alert: 物理节点cpu使用率
        expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90
        for: 2s
        labels:
          severity: ccritical
        annotations:
          summary: "{{ $labels.instance }}cpu使用率过高"
          description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" 
      - alert: 物理节点内存使用率
        expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{ $labels.instance }}内存使用率过高"
          description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
      - alert: InstanceDown
        expr: up == 0
        for: 2s
        labels:
          severity: critical
        annotations:   
          summary: "{{ $labels.instance }}: 服务器宕机"
          description: "{{ $labels.instance }}: 服务器延时超过2分钟"
      - alert: 物理节点磁盘的IO性能
        expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"
          description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"
      - alert: 入网流量带宽
        expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流入网络带宽过高!"
          description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
      - alert: 出网流量带宽
        expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流出网络带宽过高!"
          description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
      - alert: TCP会话
        expr: node_netstat_Tcp_CurrEstab > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"
          description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"
      - alert: 磁盘容量
        expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"
          description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"

执行资源清单:

kubectl apply -f prometheus-alertmanager-cfg.yaml

2、由于在prometheus中新增了etcd,所以生成一个etcd-certs,这个在部署prometheus需要

kubectl -n prometheus create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key  --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt

六、部署Prometheus+AlterManager(放到一个Pod中)

1、在node-1节点创建/data/alertmanager目录,存放alertmanager数据

mkdir /data/alertmanager -p
chmod -R 777 /data/alertmanager

2、删除旧的prometheus deployment资源

kubectl delete deploy prometheus-server -n prometheus

3、创建deployment资源

vim prometheus-alertmanager-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: prometheus-server
  namespace: prometheus
  labels:
    app: prometheus
spec:
  replicas: 1
  selector:
    matchLabels:
      app: prometheus
      component: server
    #matchExpressions:
    #- {key: app, operator: In, values: [prometheus]}
    #- {key: component, operator: In, values: [server]}
  template:
    metadata:
      labels:
        app: prometheus
        component: server
      annotations:
        prometheus.io/scrape: 'false'
    spec:
      nodeName: node-1 # 调度到node-1节点
      serviceAccountName: prometheus # 指定sa服务账号
      containers:
      - name: prometheus
        image: prom/prometheus:v2.33.5
        imagePullPolicy: IfNotPresent
        command:
        - "/bin/prometheus"
        args:
        - "--config.file=/etc/prometheus/prometheus.yml"
        - "--storage.tsdb.path=/prometheus"
        - "--storage.tsdb.retention=24h"
        - "--web.enable-lifecycle"
        ports:
        - containerPort: 9090
          protocol: TCP
        volumeMounts:
        - mountPath: /etc/prometheus
          name: prometheus-config
        - mountPath: /prometheus/
          name: prometheus-storage-volume
        - name: k8s-certs
          mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
      - name: alertmanager
        #image: prom/alertmanager:v0.14.0
        image: prom/alertmanager:v0.23.0
        imagePullPolicy: IfNotPresent
        args:
        - "--config.file=/etc/alertmanager/alertmanager.yml"
        - "--log.level=debug"
        ports:
        - containerPort: 9093
          protocol: TCP
          name: alertmanager
        volumeMounts:
        - name: alertmanager-config
          mountPath: /etc/alertmanager
        - name: alertmanager-storage
          mountPath: /alertmanager
        - name: localtime
          mountPath: /etc/localtime
      volumes:
        - name: prometheus-config
          configMap:
            name: prometheus-config
        - name: prometheus-storage-volume
          hostPath:
           path: /data
           type: Directory
        - name: k8s-certs
          secret:
           secretName: etcd-certs
        - name: alertmanager-config
          configMap:
            name: alertmanager
        - name: alertmanager-storage
          hostPath:
           path: /data/alertmanager
           type: DirectoryOrCreate
        - name: localtime
          hostPath:
           path: /usr/share/zoneinfo/Asia/Shanghai

执行YAML资源清单:

kubectl apply -f prometheus-alertmanager-deploy.yaml

查看状态:

kubectl get pods -n prometheus

在这里插入图片描述

4、创建AlterManager SVC资源

vim alertmanager-svc.yaml 
---
apiVersion: v1
kind: Service
metadata:
  labels:
    name: prometheus
    kubernetes.io/cluster-service: 'true'
  name: alertmanager
  namespace: prometheus
spec:
  ports:
  - name: alertmanager
    nodePort: 30066
    port: 9093
    protocol: TCP
    targetPort: 9093
  selector:
    app: prometheus
  sessionAffinity: None
  type: NodePort

执行YAML资源清单:

kubectl apply -f alertmanager-svc.yaml 

查看状态:

kubectl get svc -n prometheus

在这里插入图片描述

七、测试告警

浏览器访问:http://IP:30066
在这里插入图片描述

如上图可以看到,Prometheus的告警信息已经发到AlterManager了,AlertManager收到报警数据后,会将警报信息进行分组,然后根据AlertManager配置的 group_wait 时间先进行等待。等wait时间过后再发送报警信息至钉钉群了!

在这里插入图片描述
OK,如上图告警已经发送到钉钉群了,至此,本篇结束!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/110728.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用Nokogiri和OpenURI库进行HTTP爬虫

目录 一、Nokogiri库 二、OpenURI库 三、结合Nokogiri和OpenURI进行爬虫编程 四、高级爬虫编程 1、并发爬取 2、错误处理和异常处理 3、深度爬取 总结 在当今的数字化时代&#xff0c;网络爬虫已经成为收集和处理大量信息的重要工具。其中&#xff0c;Nokogiri和OpenUR…

深入理解数据结构(2)——用数组实现队列

数组是一种数据结构&#xff0c;队列也是一种数据结构。它们都是由基础的语法实现的。 如果一个数据结构可以用另外的数据结构来实现&#xff0c;那么可以有力的证明——“数据结构是一种思想”&#xff0c;是一种讲语法组合起来实现某种功能的手段 “整体大于局部” 一、队列的…

SpringSecurity6 | HelloWorld入门案例

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; Java从入门到精通 ✨特色专栏&#xf…

腾讯云优惠券如何领取?详细教程来了!

腾讯云优惠券是腾讯云为广大用户提供的优惠福利&#xff0c;包括代金券和折扣券&#xff0c;大家可以通过领取优惠券&#xff0c;在购买腾讯云产品时享受优惠。本文将为大家介绍如何领取腾讯云优惠券&#xff0c;以及领取后的使用规则。 一、腾讯云优惠券领取方法 腾讯云优惠券…

视频讲解|考虑源荷两侧不确定性的含风电电力系统低碳调度

目录 1 主要内容 2 讲解视频 1 主要内容 本次程序讲解对应程序链接考虑源荷两侧不确定性的含风电电力系统低碳调度&#xff0c;主要实现了基于模糊机会约束的源荷两侧不确定性对含风电电力系统低碳调度的影响&#xff0c;将源荷不确定性采用清晰等价类进行处理。部分讲解重点…

11.与JavaScript深入交流-[js一篇通]

文章目录 1.变量的使用1.1基本用法1.2理解 动态类型 2.基本数据类型2.1number 数字类型2.1.1数字进制表示2.1.2特殊的数字值 2.2string 字符串类型2.2.1基本规则2.2.2转义字符2.2.3求长度2.2.4字符串拼接 2.3boolean 布尔类型2.4undefined 未定义数据类型2.5null 空值类型 3.运…

原生JS 表格列拖拽 适用JqGrid

js $(function () {var d1 new dragTable();d1.init({tabel: .drag-table}); })function dragTable() {this.disX 0; // 相对按下的位置移动的距离this.outX 0; // 鼠标按下的点到大盒子边上的距离this.lanX 0; // 拖动到的位置this.$createDiv null;this.$createDivBg …

缓存和数据库一致性解决方案

引入缓存提高性能 如果你的业务处于起步阶段&#xff0c;流量非常小&#xff0c;那无论是读请求还是写请求&#xff0c;直接操作数据库即可&#xff0c;这时你的架构模型是这样的&#xff1a; 但随着业务量的增长&#xff0c;你的项目请求量越来越大&#xff0c;这时如果每次都…

rust std

目录 一&#xff0c;std基本数据结构 1&#xff0c;std::option 2&#xff0c;std::result 二&#xff0c;std容器 1&#xff0c;vector 三&#xff0c;std算法 1&#xff0c;排序 2&#xff0c;二分 &#xff08;1&#xff09;vector二分 &#xff08;2&#xff09;…

Yusi技术资讯博客wordpress模板

Yusi技术资讯博客wordpress模板&#xff0c;从第一感觉看上去&#xff0c;两栏结构直接将网站的内容展现&#xff0c;以红白灰色调搭配&#xff0c;一种低调协调的风格&#xff0c;喜欢该wordpress主题的朋友可以下载试试。 下载地址&#xff1a;https://bbs.csdn.net/topics/…

【ChatGPT系列】ChatGPT:创新工具还是失业威胁?

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…

草莓熊代码

话不多说直接上代码 如果需要exe文件电脑可以不依赖环境直接运行请评论或者私信 注意: 不需要年月日显示 注释 879-894 行不需要雪花显示 注释 895-908 行不需要礼物显示 注释 771 行653行 可以修改 祝你节日快乐内容657行 可以修改 草莓熊 内容修改程序标题 第 16 行# -*- co…

C# Onnx DBNet 检测条形码

效果 项目 代码 using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRuntime.Tensors; using OpenCvSharp; using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Numerics; using System.Runtime.InteropServices.…

FPGA时序分析与约束(9)——主时钟约束

一、时序约束 时序引擎能够正确分析4种时序路径的前提是&#xff0c;用户已经进行了正确的时序约束。时序约束本质上就是告知时序引擎一些进行时序分析所必要的信息&#xff0c;这些信息只能由用户主动告知&#xff0c;时序引擎对有些信息可以自动推断&#xff0c;但是推断得到…

PHP的Excel导出与导入

下载地址&#xff08;注意php版本大于7.3可能会报错&#xff09; GitHub - PHPOffice/PHPExcel: ARCHIVED 解压 1、导出 Excel $data[[name>a,age>11],[name>b,age>22],[name>d,age>33], ]; $fileds["name">"名称","age"…

在Java和PostgreSQL枚举之间进行转换的通用方法

枚举类型&#xff08;enum&#xff09;是一种方便的数据类型&#xff0c;允许我们指定一个常量列表&#xff0c;对象字段或数据库列可以设置为该列表中的值。 枚举的美妙之处在于我们可以通过提供人类可读格式的枚举常量来确保数据完整性。因此&#xff0c;Java和PostgreSQL原…

详解—数据结构《树和二叉树》

目录 一.树概念及结构 1.1树的概念 1.2树的表示 二.二叉树的概念及结构 2.1概念 2.2二叉树的特点 2.3现实中的二叉树 2.4数据结构中的二叉树 2.5 特殊的二叉树 2.6二叉树的存储结构 2.6.1二叉树的性质 2.6.2 顺序结构 2.6.3链式存储 三. 二叉树的链式结构的遍历 …

【广州华锐视点】节省成本,提升效果!教你快速搭建一个元宇宙3D虚拟展厅!

在当今这个数字化的时代&#xff0c;拥有一个专业的网站或者小程序已经成为了企业展示形象、推广产品的重要手段。然而&#xff0c;对于许多小企业来说&#xff0c;高昂的开发费用和复杂的技术门槛往往成为了他们实现这一目标的最大阻碍。那么&#xff0c;有没有一种方式&#…

使用 puppeteer 库采集豆瓣音频简单代码示例

今天要给大家分享的采集代码&#xff0c;主要是使用 puppeteer 库进行编写的&#xff0c;用于采集豆瓣网相关音频。这段代码也是非常的简单实用&#xff0c;一起来看看吧。 // 引入 puppeteer 库 const puppeteer require(puppeteer);// 定义获取代理服务器的函数 function …

如果一定要在C++和JAVA中选择,是C++还是java?

如果一定要在C和JAVA中选择&#xff0c;是C还是java&#xff1f; 计算机专业的同学对这个问题有疑惑的&#xff0c;- 定要看一下这个回答! 上来直接给出最中肯的建议: 如果你是刚刚步入大学的大一时间非常充裕的同学&#xff0c;猪学长强烈建议先学C/C.因为C 非常 最近很多…