这么理解矩阵乘法,让你吊打面试官

大家好啊,我是董董灿。

很多与深度学习算法相关的面试,面试官可能都会问一个问题,那就是你是如何理解矩阵乘算法的。

更有甚者,会让你当场手写矩阵乘算法,然后问细节,问如何优化,面试现场,残忍至极。

那矩阵乘法的本质到底是什么呢?为什么在神经网络中,甚至如今的大模型中,有那么多矩阵乘法出现呢?

1、矩阵乘法的本质

我查了很多资料,得出一个结论:矩阵乘法的本质,是资源的整合和再创

举个例子。

你是一个鸡尾酒调酒师,家里储存了很多鸡尾酒的原料,有金酒、利口酒、柠檬汁和可乐等等。

今天家里来了 3 位客人,他们分别喜欢喝“自由古巴”、“长岛冰茶”以及“龙舌兰日出”这 3 款鸡尾酒,并向你下了单。

希望你给他们调配出来各自喜欢的鸡尾酒。

巧的是,这 3 款鸡尾酒的原料都是金酒、利口酒、柠檬汁和可乐。

你作为一个调酒师,分分钟就把客人的爱好的鸡尾酒给调出来了。

图片

怎么做的呢?你知道配方:

  • 自由古巴: 20%金酒 + 45% 利口酒 + 10%柠檬汁 + 25%可乐

  • 长岛冰茶: 60%金酒+ 30%利口酒 + 5% 柠檬汁 + 5% 可乐

  • 龙舌兰日出:30%金酒 + 10%利口酒 + 30%柠檬汁 + 30%可乐

你在调配鸡尾酒的过程中,是按照这个配方来调配的。

这里的原料,比如利口酒和可乐,就是输入资源,配比(比如可乐的 25% )就是赋予该资源的权重。

将相同的原料按照不同的配比混合起来,就得到了不同口味的鸡尾酒。

这种做法,可以抽象一下,写成一个公式:

  • 自由古巴 = 0.2 x 金酒 + 0.45 x 利口酒 + 0.1 x 柠檬汁 + 0.25 x 可乐

  • 长岛冰茶 = 0.6 x 金酒 + 0.3 x 利口酒 + 0.05 x 柠檬汁 + 0.05 x 可乐

  • 龙舌兰日出 = 0.3 x 金酒 + 0.1 x 利口酒 + 0.3 x 柠檬汁 + 0.3 x 可乐

我们知道矩阵乘法的规则是,左矩阵的第一行乘以右矩阵的第一列,得到第一个值,第一行乘以第二列得到第二个值,...,以此类推

上面这种连乘的操作,就可以用矩阵乘法来表示。

图片

左矩阵是一行四列,代表原料。

右矩阵是四行三列,每一列代表对应原料的配比。

按照矩阵乘法的规则,他们的结果应该是一个一行三列的矩阵,分别代表调配出来的三种鸡尾酒。

看到这是不是有点熟悉了。

矩阵乘法,通过相乘累加的操作,实际上是对资源(鸡尾酒的原料)的整合和再创(创造出了新的口味,如自由古巴)。

2、深度学习中的矩阵乘法

回到深度学习算法中,矩阵乘法的右矩阵通常是权值矩阵,是作为模型的参数被训练出来的。

一个模型,在对多种数据集训练之后,模型就学习到了一个权值矩阵,实际上一个模型中会学到很多个权值矩阵,这里用一个举例子说明。

这个权值矩阵可以很好的匹配多种输入数据,并对输入数据进行整合和再创。

卷积和全连接算法,或多或少都是一种矩阵乘法,将其转换为矩阵乘法之后,那么和权值矩阵对应的另一个矩阵,就是输入数据。

假设输入的数据是一张图片,那么图片中一个通道维度代表图片的一个特征,通过矩阵乘法对通道进行乘累加操作,便可以实现特征之间的整合和再创。

也就是所谓的特征融合,跟调酒是不是很像?

更显而易见的例子体现在全连接层上,全连接层通过矩阵乘法的运算,把所有的特征全部进行了融合,最终可能就会得到某一个类别。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/109875.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

治疗红斑性肢痛症的【Chromocell】申请870万美元纳斯达克IPO上市

来源:猛兽财经 作者:猛兽财经 猛兽财经获悉,总部位于美国的生物制药公司Chromocell Therapeutics Corporation(简称:Chromocell)近期已向美国证券交易委员会(SEC)提交招股书&#x…

VM搭建虚拟机2(自定义安装)

文章目录 自定义安装选择你的centos下载目录设置用户名密码自定义安装目录注意,尽量别再同一位置安装虚拟机设置处理器数量内存根据所需配置(默认1G)NAT按需设置磁盘大小点击完成即可等待安装即可 VMware、centos、典型安装 自定义安装 选择你…

【机器学习(二) 线性代数基础I(Linear Algebra Foundations)】

机器学习(二) 线性代数基础I(Linear Algebra Foundations) 这一节主要介绍一些线性代数的基础。 目录 机器学习(二) 线性代数基础I(Linear Algebra Foundations)1. 向量 Vectors2. 复杂度 Complexity3.线…

【Linux】第七站:vim的使用以及配置

文章目录 一、vim1.vim的介绍2.vim基本使用3.vim的命令模式常用命令4.底行模式 二、vim的配置 一、vim 1.vim的介绍 vim编辑器,用来文本编写,可以写代码 它是一个多模式的编辑器 它有很多的模,不过我们暂时先只考虑这三种模式 命令模式插入模…

2023年阿里云双11有什么优惠活动?详细攻略来了!

随着双十一的临近,阿里云也正式开启了双11大促,推出了“金秋云创季”活动,那么,2023年阿里云双11的优惠活动究竟有哪些呢?本文将为大家详细介绍。 一、阿里云双11活动时间 1、2023年10月27日-2023年10月31日&#xff…

洛谷 B2009 计算 (a+b)/c 的值 C++代码

目录 题目描述 AC Code 切记 题目描述 题目网址&#xff1a;计算 (ab)/c 的值 - 洛谷 AC Code #include<bits/stdc.h> using namespace std; int main() {int a,b,c;cin>>a>>b>>c;cout<<(ab)/c<<endl;return 0; } 切记 不要复制题…

[论文阅读]Ghost-free High Dynamic Range Imaging with Context-aware Transformer

Ghost-free HDRI with Context-aware Transformer 背景介绍已有算法本文算法实验对比 背景介绍 高动态范围成像&#xff08;HDR&#xff09;是一种图像技术&#xff0c;它能够捕捉到比传统图像更广泛的亮度范围。1997年&#xff0c;Paul Debevec在他的论文《Recovering High D…

Netty复习:(2)IdleStateHandler的用法

一、handler定义&#xff1a; package handler;import io.netty.channel.ChannelHandlerContext; import io.netty.channel.ChannelInboundHandlerAdapter;public class MyChatServerHandler3 extends ChannelInboundHandlerAdapter {Overridepublic void userEventTriggered(…

第N个斐波那契数列

第N个斐波那契数列 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 class Solution { public:int tribonacci(int n) {int a[4]{0,1,1,2};if(n<4) return a[n];int kn-3;for(int i0; i<k;i){int tmpa[3];a[3]a[1]a[2]a[3];//不是【0】开始&…

从零开始搭建Prometheus+grafana服务器组件监控系统

服务器及相关组件监控 本文档主要记录了常用企业级服务器及各种组件的监控手段和监控部署方案&#xff0c;使企业可以实时感知服务器组件的健康状态&#xff0c;并在服务器或组件出现异常时及时做出反应。 本方案采用的Prometheusgrafana的方式实现对服务器及各种组件的监控&am…

CentOS 搭建本地 yum 源方式 安装 httpd 服务

CentOS 搭建本地 yum 源方式 安装 httpd 服务 修改 yum 源 挂载光驱 mkdir -p /mnt/cdrom mount /dev/cdrom /mnt/cdromvi /etc/fstab追加以下内容&#xff1a; /dev/cdrom /mnt/cdrom iso9660 defaults 0 0手动修改CentOS-Base.repo 备份 yum 源配置文件 mv /etc/yum.re…

06 MIT线性代数-线性无关,基和维数Independence, basis, and dimension

1. 线性无关 Independence Suppose A is m by n with m<n (more unknowns than equations) Then there are nonzero solutions to Ax0 Reason: there will be free variables! A中具有至少一个自由变量&#xff0c;那么Ax0一定具有非零解。A的列向量可以线性组合得到零向…

ubuntu PX4 vscode stlink debug设置

硬件 stlink holybro debug板 pixhawk4 安装openocd 官方文档&#xff0c;但是第一步安装建议从源码安装&#xff0c;bug少很多 github链接 编译安装&#xff0c;参考 ./bootstrap (when building from the git repository)./configure [options]makesudo make install安装后…

CentOS 7 安装和配置java环境

1 安装包准备 安装包可以通过下面地址进行版本选择安装&#xff1a; https://www.oracle.com/java/technologies/downloads/#java8 2 正式开始安装 本次分享的安装方法直接通过编辑/etc/profile文件实现java的安装 2.1 新建安装包存放目录 mkdir /java cd /java/ 2.2 解压安…

【音视频|PCM】PCM格式详解

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…

javascript数据类型

目录 原始数据类型 引用数据类型 类型检测 类型转换 总结 原始数据类型 JavaScript 中有六种原始数据类型&#xff0c;它们是&#xff1a; Undefined&#xff08;未定义&#xff09;: 表示一个未被赋值的变量。Null&#xff08;空值&#xff09;: 表示一个空对象指针。B…

SpringBoot 公司推广系统 公司广告系统

SpringBoot 公司推广系统 公司广告系统 系统功能 首页功能: 广告展示 方案列表 站内搜索 资讯 查看详细咨询 登录注册 收藏 咨询方案 在线客服实时聊天 后台管理功能: 系统管理分为: 用户管理 角色管理 客户管理 首页轮播管理 公告管理 方案管理: 方案管理 资讯管理: 类型管…

打包个人项目成python算法包

*免责声明&#xff1a; 1\此方法仅提供参考 2\搬了其他博主的操作方法,以贴上路径. 3* 场景一: 使用conda pack进行打包个人项目 场景二: … 场景一: 使用conda pack进行打包个人项目 1.1 导出包列表 activate jiancepip list --formatfreeze >requirements.txt 1.…

Transformers实战(二)快速入门文本相似度、检索式对话机器人

Transformers实战&#xff08;二&#xff09;快速入门文本相似度、检索式对话机器人 1、文本相似度 1.1 文本相似度简介 文本匹配是一个较为宽泛的概念&#xff0c;基本上只要涉及到两段文本之间关系的&#xff0c;都可以被看作是一种文本匹配的任务&#xff0c; 只是在具体…

【JavaEE】HTTP协议

HTTP协议 HTTP是什么?HTTP 协议格式HTTP 请求格式HTTP响应格式协议格式总结 HTTP 请求 (Request)认识 URLURL 基本格式 关于 URL encode认识 "方法" (method)1. GET 方法2. POST 方法 认识请求 "报头" (header) HTTP 响应详解认识 "状态码" (st…