目标检测算法改进系列之嵌入Deformable ConvNets v2 (DCNv2)

Deformable ConvNets v2

简介:由于构造卷积神经网络所用的模块中几何结构是固定的,其几何变换建模的能力本质上是有限的。在DCN v1中引入了两种新的模块来提高卷积神经网络对变换的建模能力,即可变形卷积 (deformable convolution) 和可变形兴趣区域池化 (deformable ROI pooling)。它们都是基于在模块中对空间采样的位置信息作进一步位移调整的想法,该位移可在目标任务中学习得到,并不需要额外的监督信号。新的模块可以很方便在现有的卷积神经网络 中取代它们的一般版本,并能很容易进行标准反向传播端到端的训练,从而得到可变形卷积网络 (deformable convolutional network)。但是增加偏移之后可能会将无关的信息考虑进去,影响最终的结果。所以在DCN v2中作者对DCN v1进行了提升,减小无关信息的干扰。

原文地址:Deformable ConvNets v2: More Deformable, Better Results

regular conv
DCNv1
DCNv2

pytorch代码实现

class DCNv2(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=1, dilation=1, groups=1, deformable_groups=1):
        super(DCNv2, self).__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = (kernel_size, kernel_size)
        self.stride = (stride, stride)
        self.padding = (padding, padding)
        self.dilation = (dilation, dilation)
        self.groups = groups
        self.deformable_groups = deformable_groups

        self.weight = nn.Parameter(
            torch.empty(out_channels, in_channels, *self.kernel_size)
        )
        self.bias = nn.Parameter(torch.empty(out_channels))

        out_channels_offset_mask = (self.deformable_groups * 3 *
                                    self.kernel_size[0] * self.kernel_size[1])
        self.conv_offset_mask = nn.Conv2d(
            self.in_channels,
            out_channels_offset_mask,
            kernel_size=self.kernel_size,
            stride=self.stride,
            padding=self.padding,
            bias=True,
        )
        self.bn = nn.BatchNorm2d(out_channels)
        self.act = Conv.default_act
        self.reset_parameters()

    def forward(self, x):
        offset_mask = self.conv_offset_mask(x)
        o1, o2, mask = torch.chunk(offset_mask, 3, dim=1)
        offset = torch.cat((o1, o2), dim=1)
        mask = torch.sigmoid(mask)
        x = torch.ops.torchvision.deform_conv2d(
            x,
            self.weight,
            offset,
            mask,
            self.bias,
            self.stride[0], self.stride[1],
            self.padding[0], self.padding[1],
            self.dilation[0], self.dilation[1],
            self.groups,
            self.deformable_groups,
            True
        )
        x = self.bn(x)
        x = self.act(x)
        return x

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        std = 1. / math.sqrt(n)
        self.weight.data.uniform_(-std, std)
        self.bias.data.zero_()
        self.conv_offset_mask.weight.data.zero_()
        self.conv_offset_mask.bias.data.zero_()

class Bottleneck_DCN(nn.Module):
    # Standard bottleneck with DCN
    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):  # ch_in, ch_out, shortcut, groups, kernels, expand
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        if k[0] == 3:
            self.cv1 = DCNv2(c1, c_, k[0], 1)
        else:
            self.cv1 = Conv(c1, c_, k[0], 1)
        if k[1] == 3:
            self.cv2 = DCNv2(c_, c2, k[1], 1, groups=g)
        else:
            self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C2f_DCN(nn.Module):
    # CSP Bottleneck with 2 convolutions
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck_DCN(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))

    def forward(self, x):
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

具体修改

module.py文件修改

将pytorch代码实现中的定义代码添加至module.py文件最后
修改1

task.py文件修改

导入C2f-DCN模块
在这里插入图片描述
def parse_model函数部分导入C2f-DCN
在这里插入图片描述

yolov8.yaml配置文件修改

替换原有C2f模块,最后进行训练即可。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/108447.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Android OpenGL ES 2.0入门实践

本文既然是入门实践,就先从简单的2D图形开始,首先,参考两篇官方文档搭建个框架,便于写OpenGL ES相关的代码:构建 OpenGL ES 环境、OpenGL ES 2.0 及更高版本中的投影和相机视图。 先上代码,代码效果如下图…

基于哈里斯鹰算法的无人机航迹规划-附代码

基于哈里斯鹰算法的无人机航迹规划 文章目录 基于哈里斯鹰算法的无人机航迹规划1.哈里斯鹰搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要:本文主要介绍利用哈里斯鹰算法来优化无人机航迹规划。 …

私有云:【4】Esxi安装Server2012R2

私有云:【4】Esxi安装Server2012R2 1、使用Esxi安装虚拟机2、启动虚拟机3、安装必要服务及打补丁 1、使用Esxi安装虚拟机 选择esxi虚拟机挂在Win2012的镜像iso 使用Esxi客户端新建虚拟机 设置虚拟机名称及系统作为模板,如图所示 选择数据存储&#xff0…

C#WPF嵌入字体实例

本文介绍C#WPF嵌入字体实例。 首先创建项目 添加Resources文件夹,添加字体文件,字体文件属性:生成操作为Resources,复制到输出目录:不复制 字体的使用可以采用以下两种方法: 方式一 直接引用 FontFamily="./Resources/#幼圆" 方式二 定义资源 <Applica…

东软集团:看似低调,却有了19年的AI坚持

【科技明说 &#xff5c; 重磅专题】 在AI领域的专注与研究&#xff0c;东软集团是一个低调的存在。 可能很多人不太了解东软集团对于AI的专心与专注以及专业。三专可以简单概括东软集团的AI雄心壮志。 专注在于&#xff0c;早在2004年&#xff0c;东软就开始启动人工智能技…

openEuler 22.03 LTS 安装 Docker CE 和 Dcoker Compose

openEuler 使用 DNF 安装 Docker CE 1024&#xff0c;节日快乐&#xff01;回归正题&#xff0c;DNF 安装 DockerOS 系统环境准备安装 docker-ce 步骤1、更新系统2、安装必要的软件包3、添加 Docker CE 存储库4、更新索引缓存并安装 Docker CE5、启动 Docker 服务6、查看 Docke…

如何公网远程访问本地WebSocket服务端

本地websocket服务端暴露至公网访问【cpolar内网穿透】 文章目录 本地websocket服务端暴露至公网访问【cpolar内网穿透】1. Java 服务端demo环境2. 在pom文件引入第三包封装的netty框架maven坐标3. 创建服务端,以接口模式调用,方便外部调用4. 启动服务,出现以下信息表示启动成功…

Lvs+Nginx+NDS

什么是&#xff1f;为什么&#xff1f;需要负载均衡 一个网站在创建初期&#xff0c;一般来说都是只有一台服务器对用户提供服务 ​ 从图里可以看出&#xff0c;用户经过互联网直接连接了后端服务器&#xff0c;如果这台服务器什么时候突然 GG 了&#xff0c;用户将无法访问这…

从InnoDB索引的数据结构,去理解索引

从InnoDB索引的数据结构&#xff0c;去理解索引 1、InnoDB 中的 BTree1.1、BTree 的组成1.2、BTree中的数据页 2、聚簇索引2.1、聚簇索引的特点2.2、聚簇索引的结构示例2.3、聚簇索引的优缺点 3、非聚簇索引3.1、非聚簇索引结构示例3.2、关于回表3.3、聚簇索引和非聚簇索引的区…

Spring Boot 配置邮件发送服务

文章归档&#xff1a;https://www.yuque.com/u27599042/coding_star/ctwkrus1r9zrytsq spring boot 版本 3.1.3 邮件发送服务使用的 QQ 邮箱提供的 依赖 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent…

竹云产品入选《2023年度上海市网络安全产业创新攻关成果目录》

为推进网络安全产业发展&#xff0c;建设网络安全产业创新高地&#xff0c;上海市经济和信息化委员会于10月24日正式发布《2023年度上海市网络安全产业创新攻关成果目录》&#xff0c;共评选出16项创新成果&#xff0c;其中包括基础技术创新8项、应用技术创新4项、服务业态创新…

超详细的Windows 11虚拟机安装教程

准备安装文件创建虚拟机Windows安装 准备安装文件 1、安装好VMware WorkStation 16 Pro&#xff08;越新越好&#xff09; 2、下载好Windows 11系统镜像 其中VMware的安装教程看我往期推送&#xff0c;至少用我提供的16.2版本&#xff0c;低版本的会出现蓝屏问题。Windows …

深入探究Python中的深度学习:神经网络与卷积神经网络

当下&#xff0c;深度学习已经成为人工智能研究和应用领域的关键技术之一。作为一个开源的高级编程语言&#xff0c;Python提供了丰富的工具和库&#xff0c;为深度学习的研究和开发提供了便利。本文将深入探究Python中的深度学习&#xff0c;重点聚焦于神经网络与卷积神经网络…

【笔录】TVP技术沙龙:寻宝AI时代

目录 引言大模型的应用案例大模型三问模型落地可行性考量维度AIGC的几个可行应用方向AIGC的存储LLM工程应用范式演进LLM编程协作范式变化 引言 大模型是10倍的机会&#xff0c;但并不是平均主义的机会&#xff0c;没有低垂的果实。 企业想在大模型的赛道上跑出成绩&#xff0c;…

React 生成传递给无障碍属性的唯一 ID

useId() 在组件的顶层调用 useId 生成唯一 ID&#xff1a; import { useId } from react; function PasswordField() { const passwordHintId useId(); // ...参数 useId 不带任何参数。 返回值 useId 返回一个唯一的字符串 ID&#xff0c;与此特定组件中的 useI…

【jenkins】centos7在线安装jenkins

一、系统要求 最低推荐配置 256MB可用内存 1GB可用磁盘空间(作为一个Docker容器运行jenkins的话推荐10GB) 软件配置 Java 8—​无论是Java运行时环境&#xff08;JRE&#xff09;还是Java开发工具包&#xff08;JDK&#xff09;都可以 二、安装jenkins 准备一台安装有ce…

ALS算法在菜品智能推荐系统的应用

核心推荐模块的推荐算法是基于用户推荐模 型&#xff08;user_model&#xff09;协同过滤的矩阵分解过滤算法 ALS。其算法原理可叙述为&#xff1a; ALS收集大数据样本的用户评分喜好信息&#xff0c;训 练推荐模型&#xff0c;基于该模型进行协同过滤。 对于任意一个形如用户-…

Spring体系结构

Spring体系结构 核心容器 核心容器由 spring-core&#xff0c;spring-beans&#xff0c;spring-context&#xff0c;spring-context-support和spring-expression&#xff08;SpEL&#xff0c;Spring 表达式语言&#xff0c;Spring Expression Language&#xff09;等模块组成&…

保护自己免受AI诈骗的方法

前言 在21世纪&#xff0c;人工智能已经成为我们日常生活的一部分。不仅在聊天、写作、绘画和编程领域展现了巨大的潜力&#xff0c;还改变了我们的生活方式&#xff0c;提供了便捷和创新。然而&#xff0c;随着这一技术的迅速发展&#xff0c;我们也不得不面对新的威胁&#…

SQL中:语法总结(group by,having ,distinct,top,order by,like等等)

语法总结&#xff1a;group by&#xff0c;distinct ...... 1.分组group by、条件havinggroup byhaving 2.聚集函数count 3.order by4.对表中数据的操作&#xff1a;增insert、删delete、改update增insert 5.对表中数据的操作&#xff1a;查select嵌套查询不相关子查询相关子查…