基于引力搜索算法的无人机航迹规划-附代码

基于引力搜索算法的无人机航迹规划

文章目录

  • 基于引力搜索算法的无人机航迹规划
    • 1.引力搜索搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用引力搜索算法来优化无人机航迹规划。

1.引力搜索搜索算法

引力搜索算法原理请参考:https://blog.csdn.net/u011835903/article/details/108518992

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得引力搜索搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用引力搜索算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述

从结果来看,引力搜索算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/108405.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端伪进度条实现(仿antd message使用react组件静态方法)

文章目录 背景实现方法(一) react组件静态方法(二) 通过静态方法改变组件的状态(三) 指定进度条的步幅规则(四) 成功和失败的状态改变1. 成功2. 失败 (五) 组件消失(六) 背景遮罩 最终实现及代码组件代码模拟调用进度条组件的代码 可能遇到的问题静态方法调不到/报错组件渲染两…

帆软report JS实现填报控件只能填写一次

效果 方法: 代码: if(this.getValue()!"")//判断这个控件框是否有值,这里是不为空{this.setEnable(false)}//不为空,则不能再修改else{this.setEnable(true)}//为空,可以编辑

Perl爬虫程序

以下是一个使用Perl爬虫程序,用于爬取图像。每行代码的中文解释如下: #!/usr/bin/perl ​ use strict; use warnings; use Mojo::UserAgent; use JSON; ​ # 创建一个Mojo::UserAgent实例 my $ua Mojo::UserAgent->new; ​ # 使用获取代理 my $prox…

计算机网络重点概念整理-第三章 数据链路层【期末复习|考研复习】

第三章 数据链路层 【期末复习|考研复习】 计算机网络系列文章传送门: 第一章 计算机网络概述 第二章 物理层 第三章 数据链路层 第四章 网络层 第五章 传输层 第六章 应用层 第七章 网络安全 计算机网络整理-简称&缩写 文章目录 第三章 数据链路层 【期末复习…

两数和的目标 python (初学者vs程序员)

题目描述 1)给定一个整数列表,在列表中,从前向后查找两个元素使其相加之和等于目标数,并返回两个整数在列表中的下标。如果没有符合条件的数字,输出False,本题假设题目的解唯一。‬‪‬‪‬‪‬‪‬‮‬‪…

AT32固件库外设使用,ArduinoAPI接口移植,模块化

目录 一、ArduinoAPI移植一、通用定时器使用1.计时1.2.ETR外部时钟计数4.ArduinoAPI - timer 三、ADC1.ADC初始化(非DMA)2.ADC_DMA 规则通道扫描 六、USB HID IAP1.准备好Bootloader和app2.配置好时钟,一定要打开USB3.将生成的时钟配置复制到…

《Attention Is All You Need》阅读笔记

论文标题 《Attention Is All You Need》 XXX Is All You Need 已经成一个梗了,现在出现了很多叫 XXX Is All You Need 的文章,简直标题党啊,也不写方法,也不写结果,有点理解老师扣论文题目了。 作者 这个作者栏太…

vue源码分析(五)——vue render 函数的使用

文章目录 前言一、render函数1、render函数是什么? 二、render 源码分析1.执行initRender方法2.vm._c 和 vm.$createElement 调用 createElement 方法详解(1)区别(2)代码 3、原型上的_render方法(1&#xf…

视频特效制作软件 After Effects 2023 mac中文版介绍说明

After Effects 2023 mac是一款专业视频特效和动态图形设计软件。ae2023被广泛应用于电影、电视节目、广告和网络媒体等领域,可以创建各种令人惊叹的视觉效果。 在After Effects 2023中,用户可以使用强大的工具和功能来制作复杂的特效和动画。新版本引入了…

数据库简史:多主数据库架构的由来和华为参天引擎的机遇

注:本文发表后,收到了很多后台反馈,其中关于大型机的早期成就不容省略。微调重发本文,纯属个人观点,错谬之处,仍然期待指正。 2023年10月13日,在北京举办的“2023金融业数据库技术大会"上&…

GPT的广泛应用会对互联网公司造成挑战吗?——探讨GPT在实际使用中的应用和影响

文章目录 前言GPT 技术的背景和发展历程GPT 技术对互联网行业的影响GPT 技术在互联网行业中的应用GPT 技术对于用户隐私和数据安全的威胁GPT 技术对于人类工作岗位的影响加强 AI 伦理和监管加强 AI 安全性和隐私保护推动 AI 创新和发展,避免过度依赖 AIGPT 技术是一…

HIT_OS_LAB1 调试分析 Linux 0.00 引导程序

操作系统实验一 姓名:董帅学号:2021111547班级:21R0312 1.1 实验目的 熟悉实验环境掌握如何手写Bochs虚拟机的配置文件掌握Bochs虚拟机的调试技巧掌握操作系统启动的步骤 1.2 实验内容 1.2.1 掌握如何手写Bochs虚拟机的配置文件 boot: f…

2.MySQL的调控按钮——启动选项和系统变量

2.MySQL的调控按钮——启动选项和系统变量 1.启动选项和配置文件1.1 在命令行上使用选项1.2 配置文件中使用选项1.2.1 配置文件路径1.2.2 配置文件的内容1.2.3 特定 MySQL 版本的专用选项组1.2.4 配置文件的优先级1.2.5 同一个配置文件中多个组的优先级1.2.6 defaults-file 的使…

回归预测 | MATLAB实现BO-BiLSTM贝叶斯优化双向长短期神经网络多输入单输出回归预测

回归预测 | MATLAB实现BO-BiLSTM贝叶斯优化双向长短期神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现BO-BiLSTM贝叶斯优化双向长短期神经网络多输入单输出回归预测效果一览基本介绍模型搭建程序设计参考资料 效果一览 基本介绍 MATLAB实现BO-BiLSTM贝叶斯优化双向长…

mysql源码安装

Linux环境 1、mysql下载地址:https://dev.mysql.com/downloads/mysql/5.7.html#downloads 下载参考: 2、把下载的 MySQL 压缩包上传到 Linux 服务器 3、解压mysql-5.7.39-linux-glibc2.12-x86_64.tar.gz tar -zxvf mysql-5.7.39-linux-glibc2.12-x86…

【Linux】解决缓存锁问题:无法获得锁 /var/lib/dpkg/lock-frontend

今天在运行apt-get update更新软件包后,突然发现安装新的软件出现了这个报错:正在等待缓存锁:无法获得锁 /var/lib/dpkg/lock-frontend。锁正由进程 1855(unattended-upgr)持有。如图。 这个错误通常是由于其他进程正在…

Word批量删除文档属性和个人信息方法图解

投标文件中设计敏感信息,在投标前必须删除,Word批量删除文档属性和个人信息方法图解: 右键word文件属性--详细信息,可以查看如下信息; 删除上述信息的办法: 1.打开word文件---文件 2.检查文档、检查文档 检…

竞赛 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐…

Linux操作系统 - 从概念上认识进程

目录 前置知识 冯诺依曼和现代计算机结构 操作系统的理解 进程的概念 进程和PCB 查看进程信息的指令 - ps 进程的一些特性 进程标识符 - PID 进程状态 进程状态的概念 Linux下的进程状态 父子进程 子进程的创建 - fork 僵尸进程 孤儿进程 进程切换 CPU上下文切…

分享54个ASP.NET源码总有一个是你想要的

分享54个ASP.NET源码总有一个是你想要的 链接:https://pan.baidu.com/s/1khPzxtOFP0wUHpg7TBDitg?pwd8888 提取码:8888 项目名称 (ASP.Net)基于三层架构的企业信息管理系统 asp .net mvc编写的房产管理系统 asp.net core mvc 病人管理后台 asp.ne…