竞赛 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 Yolov5算法
  • 4 数据处理和训练
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **深度学习卫星遥感图像检测与识别 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

近年来,世界各国大力发展航空航天事业,卫星图像的目标检测在各行各业的应用得到了快速的发展,特别是军事侦查、海洋船舶和渔业管理等领域。由于卫星图像中有价值的信息极少,卫星图像数据规模巨大,这迫切需要智能辅助工具帮助相关从业人员从卫星图像中高效获取精确直观的信息。
本文利用深度学习技术,基于Yolov5算法框架实现卫星图像目标检测问题。

2 实现效果

实现效果如下:可以看出对船只、飞机等识别效果还是很好的。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 Yolov5算法

简介
下图所示为 YOLOv5 的网络结构图,分为输入端,Backbone,Neck 和 Prediction 四个部分。其中,
输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算,Backbone 包括 Focus 结构、CSP
结 构,Neck 包 括 FPN+PAN 结 构,Prediction 包 括GIOU_Loss 结构。
在这里插入图片描述
相关代码

class Yolo(object):
    def __init__(self, weights_file, verbose=True):
        self.verbose = verbose
        # detection params
        self.S = 7  # cell size
        self.B = 2  # boxes_per_cell
        self.classes = ["aeroplane", "bicycle", "bird", "boat", "bottle",
                        "bus", "car", "cat", "chair", "cow", "diningtable",
                        "dog", "horse", "motorbike", "person", "pottedplant",
                        "sheep", "sofa", "train","tvmonitor"]
        self.C = len(self.classes) # number of classes
        # offset for box center (top left point of each cell)
        self.x_offset = np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),
                                              [self.B, self.S, self.S]), [1, 2, 0])
        self.y_offset = np.transpose(self.x_offset, [1, 0, 2])

        self.threshold = 0.2  # confidence scores threhold
        self.iou_threshold = 0.4
        #  the maximum number of boxes to be selected by non max suppression
        self.max_output_size = 10

        self.sess = tf.Session()
        self._build_net()
        self._build_detector()
        self._load_weights(weights_file)

4 数据处理和训练

数据集
本项目使用 DOTA 数据集,原数据集中待检测的目标如下
在这里插入图片描述
原数据集中的标签如下
在这里插入图片描述
图像分割和尺寸调整
YOLO 模型的图像输入尺寸是固定的,由于原数据集中的图像尺寸不一,我们将原数据集中的图像按目标分布的位置分割成一个个包含目标的子图,并将每个子图尺寸调整为
1024×1024。分割前后的图像如所示。
分割前
在这里插入图片描述
分割后
在这里插入图片描述
模型训练
在 yolov5/ 目录,运行 train.py 文件开始训练:

python train.py --weight weights/yolov5s.pt --batch 16 --epochs 100 --cache

其中的参数说明:

  • weight:使用的预训练权重,这里示范使用的是 yolov5s 模型的预训练权重
  • batch:mini-batch 的大小,这里使用 16
  • epochs:训练的迭代次数,这里我们训练 100 个 epoch
  • cache:使用数据缓存,加速训练进程

相关代码

#部分代码
def train(hyp, opt, device, tb_writer=None):
    logger.info(f'Hyperparameters {hyp}')
    log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve'  # logging directory
    wdir = log_dir / 'weights'  # weights directory
    os.makedirs(wdir, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = str(log_dir / 'results.txt')
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Save run settings
    with open(log_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(log_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if 'anchors' in hyp and hyp['anchors']:
            ckpt['model'].yaml['anchors'] = round(hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = ['', ]  # parameter names to freeze (full or partial)
    if any(freeze):
        for k, v in model.named_parameters():
            if any(x in k for x in freeze):
                print('freezing %s' % k)
                v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        v.requires_grad = True
        if '.bias' in k:
            pg2.append(v)  # biases
        elif '.weight' in k and '.bn' not in k:
            pg1.append(v)  # apply weight decay
        else:
            pg0.append(v)  # all else

训练开始时的日志信息
在这里插入图片描述
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/108376.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux操作系统 - 从概念上认识进程

目录 前置知识 冯诺依曼和现代计算机结构 操作系统的理解 进程的概念 进程和PCB 查看进程信息的指令 - ps 进程的一些特性 进程标识符 - PID 进程状态 进程状态的概念 Linux下的进程状态 父子进程 子进程的创建 - fork 僵尸进程 孤儿进程 进程切换 CPU上下文切…

分享54个ASP.NET源码总有一个是你想要的

分享54个ASP.NET源码总有一个是你想要的 链接:https://pan.baidu.com/s/1khPzxtOFP0wUHpg7TBDitg?pwd8888 提取码:8888 项目名称 (ASP.Net)基于三层架构的企业信息管理系统 asp .net mvc编写的房产管理系统 asp.net core mvc 病人管理后台 asp.ne…

【表面缺陷检测】钢轨表面缺陷检测数据集介绍(2类,含xml标签文件)

一、介绍 钢轨表面缺陷检测是指通过使用各种技术手段和设备,对钢轨表面进行检查和测量,以确定是否存在裂纹、掉块、剥离、锈蚀等缺陷的过程。这些缺陷可能会对铁路运输的安全和稳定性产生影响,因此及时进行检测和修复非常重要。钢轨表面缺陷…

pytorch-fastrcnn识别王者荣耀敌方英雄血条

文章目录 前言效果如下实现训练数据获得训练数据和测试数据yaml文件训练py画框文件的修改py测试py 前言 最近看王者荣耀视频看到了一个别人提供的一个百里自动设计解决方案,使用一个外设放在百里的二技能上,然后拖动外设在屏幕上滑动,当外设检测到有敌方英雄时外设自动松开百里…

05、SpringCloud -- 秒杀按钮、秒杀请求流程(各种请求到后台的判断、减库存、下单数据和次数保存)

目录 秒杀按钮代码实现:vue的JS实现:秒杀请求需求:代码前端后端Seckill-apidomainSeckill-serverWebConfig1、秒杀请求判断controller2、重复下单判断MapperService 接口Impl 实现类controller3、库存判断4、秒杀涉及到的操作_01、减库存_02、创建订单对象并保存_03、用户下…

buuctf_练[CSAWQual 2019]Web_Unagi

[CSAWQual 2019]Web_Unagi 文章目录 [CSAWQual 2019]Web_Unagi掌握知识解题思路关键payload 掌握知识 ​ XXE漏洞利用,xml文件转换编码绕过WAF(UTF-8 --> UTF-16),xml文件格式的书写 ​ 再遇到上传xml文件被拦截,就尝试修改编码再上传&a…

openpnp - 汇川伺服和冰沙主板的连接

文章目录 openpnp - 汇川伺服和冰沙主板的连接概述笔记X轴伺服X轴步进电机X伺服 - 电源进线X轴伺服 - 步进控制线X轴步进电机 - 步进控制线X轴伺服 - 编码器反馈线X轴步进电机 - 编码器反馈线X伺服 - 主板端来的控制信号线主板端 - 主板端来的控制信号线X伺服控制信号线 - 主板…

驱动作业10.28

驱动程序 #include <linux/init.h> #include <linux/module.h> #include<linux/of.h> #include<linux/of_gpio.h> #include<linux/gpio.h> #include<linux/timer.h> #include <linux/fs.h> #include <linux/io.h> #include &…

R-FCN: Object Detection via Region-based Fully Convolutional Networks(2016.6)

文章目录 AbstractIntroduction当前最先进目标检测存在的问题针对上述问题&#xff0c;我们提出... Our approachOverviewBackbone architecturePosition-sensitive score maps & Position-sensitive RoI pooling Related WorkExperimentsConclusion 原文链接 源代码 Abstr…

【RTOS学习】互斥管理 | 调试 | 信息统计

&#x1f431;作者&#xff1a;一只大喵咪1201 &#x1f431;专栏&#xff1a;《RTOS学习》 &#x1f525;格言&#xff1a;你只管努力&#xff0c;剩下的交给时间&#xff01; 互斥管理 | 调试 | 信息统计 &#x1f349;互斥管理&#x1f330;屏蔽中断&#x1f330;暂停调度器…

Android问题笔记四十二:signal 11 (SIGSEGV), code 1 (SEGV_MAPERR) 的解决方法

点击跳转>Unity3D特效百例点击跳转>案例项目实战源码点击跳转>游戏脚本-辅助自动化点击跳转>Android控件全解手册点击跳转>Scratch编程案例点击跳转>软考全系列 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分享&…

阿里云服务器—ECS快速入门

这里对标阿里云的课程&#xff0c;一步步学习&#xff0c;链接在下面&#xff0c;学习完考试及格即可获取阿里云开发认证和领取证书&#xff0c;大家可以看看这个&#xff0c;这里我当作笔记&#xff0c;记一下提升印象&#xff01; 内容很长&#xff0c;请耐心看完&#xff0…

论文-分布式-并发控制-并发控制问题的解决方案

目录 参考文献 问题 解法与证明 易读版本 参考文献 Dijkstra于1965年发表文章Solution of a Problem in Concurrent Programming Control&#xff0c;引出并发系统下的互斥(mutual exclusion)问题&#xff0c;自此开辟了分布式计算领域Dijkstra在文中给出了基于共享存储原子…

论文阅读——ELECTRA

论文下载&#xff1a;https://openreview.net/pdf?idr1xMH1BtvB 另一篇分析文章&#xff1a;ELECTRA 详解 - 知乎 一、概述 对BERT的token mask 做了改进。结合了GAN生成对抗模型的思路&#xff0c;但是和GAN不同。 不是对选择的token直接用mask替代&#xff0c;而是替换为…

Maven配置阿里云中央仓库settings.xml

Maven配置阿里云settings.xml 前言一、阿里云settings.xml二、使用步骤1.任意目录创建settings.xml2.使用阿里云仓库 总结 前言 国内网络从maven中央仓库下载文件通常是比较慢的&#xff0c;所以建议配置阿里云代理镜像以提高jar包下载速度&#xff0c;IDEA中我们需要配置自己…

C++常见容器实现原理

引言 如果有一天&#xff01;你骄傲离去&#xff01;&#xff08;抱歉搞错了&#xff09;如果有一天&#xff0c;你在简历上写下了这段话&#xff1a; 那么你不得不在面试前实现一下STL常见的容器了。C的常用容器有&#xff1a;vector、string、deque、stack、queue、list、se…

Docker:安装MySQL

Docker&#xff1a;安装MySQL 1. 部署MySQL2.部署多个MySQL服务 1. 部署MySQL 首先需要安装Docker&#xff0c;安装Docker地址&#xff1a;http://t.csdnimg.cn/utPGF 安装命令&#xff1a; docker run -d \--name mysql \-p 3306:3306 \-e TZAsia/Shanghai \-e MYSQL_ROOT…

[论文笔记]GTE

引言 今天带来今年的一篇文本嵌入论文GTE, 中文题目是 多阶段对比学习的通用文本嵌入。 作者提出了GTE,一个使用对阶段对比学习的通用文本嵌入。使用对比学习在多个来源的混合数据集上训练了一个统一的文本嵌入模型,通过在无监督预训练阶段和有监督微调阶段显著增加训练数…

IOC课程整理-6 Spring IoC 依赖注入

1 依赖注入的模式和类型 模式 类型 2 自动绑定&#xff08;Autowiring&#xff09; 官方定义 “自动装配是Spring框架中一种机制&#xff0c;用于自动解析和满足bean之间的依赖关系。通过自动装配&#xff0c;Spring容器可以根据类型、名称或其他属性来自动连接协作的bean&…

通道洗牌的思想神了

大家好啊&#xff0c;我是董董灿。 昨天写了一篇关于分组卷积的文章&#xff1a;分组卷积的思想神了&#xff0c;然后有同学希望多了解下通道洗牌。 我个人感觉&#xff0c;通道洗牌这个算法&#xff0c;或者说这个思想&#xff0c;可以称之为小而精&#xff0c;并且是实际解…