Generative AI 新世界 | Falcon 40B 开源大模型的部署方式分析

在上期文章,我们探讨了如何在自定义数据集上来微调(fine-tuned)模型。本期文章,我们将重新回到文本生成的大模型部署场景,探讨如何在 Amazon SageMaker 上部署具有 400 亿参数的 Falcon 40B 开源大模型。

亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点 这里让它成为你的技术宝库!

我们将对比两种不同的部署方式:

  1. 开箱即用的 Amazon SageMaker JumpStart 部署方式
  2. 更细控制颗粒度的 Amaon SageMaker Notebook 部署方式

Falcon 40B 开源大模型概述

Flacon 40B 是由阿拉伯联合酋长国技术创新研究所(TII)开发的大语言模型。它于 2023 年 2 月发布,是目前最大的开源大语言模型之一。Flacon 40B 有 400 亿个参数,比 GPT-3 和 LLaMA 都要多。Flacon 40B 是在大量的文本和代码数据集上完成模型训练的,包括 RefinedWeb 数据集,这是一个 Common Crawl 数据集的过滤版本。

1.Flacon 40B 的特点

Falcon 40B 具有多种使其成为强大的大型语言模型之功能,这些功能包括:

  • 大尺寸:Flacon 40B 有 400 亿个参数,这使其能够学习单词和概念之间的更多复杂关系
  • 高效训练:Falcon 40B 使用多种技术来使其训练更加高效,例如 3D 并行性和 ZeRO 优化
  • 高级架构:Falcon 40B 使用先进的架构,包括 FlashAttention 和 Multi-query Attention。这些技术使 Flacon 40B 能够更好地理解文本中的长距离依赖关系
  • 开源:Flacon 40B 是开源的,允许研究和开发人员对其进行实验和改进
2.Flacon 40B 的训练数

Falcon-40B 接受了 RefinedWeb 的 1,000 亿个 token 的训练,RefinedWeb 是一个经过过滤和重复数据删除的高质量网络数据集。值得一提的是,Falcon 团队认为他们使用 RefinedWeb 数据集的数据质量非常优秀,为此他们还专门发过一篇论文,如下所示:

图片

Source:https://arxiv.org/pdf/2306.01116.pdf,2023/06?trk=cndc-detail

3.Flacon 40B 的训练参数和过程

Falcon-40B 使用了 Amazon SageMaker 进行训练,在 p4d 实例中使用了 384 个 A100 40GB GPU。训练过程中,Falcon-40B 使用了 3D 并行度策略(TP=8、PP=4、DP=12)和 ZeRO。模型训练于 2022 年 12 月开始,历时两个月。其主要的训练参数如下所示:

图片

Source: https://huggingface.co/tiiuae/falcon-40b?trk=cndc-detail

4.Flacon 40B 的模型结构

Falcon-40B 是一个因果解码器模型(causal decoder-only model ),在因果语言建模任务(即预测下一个 token)上训练。该架构主要参考在 GPT-3 论文(Brown et al., 2020)上做了以下主要改进:

  1. 位置嵌入(Positional embeddings):采用 rotary 位置嵌入(论文:Su et al., 2021)
  2. 注意力机制(Attention):采用 multiquery(论文:Shazeer et al., 2019)和 FlashAttention(论文:Dao et al., 2022)
  3. 解码器模块:采用了具有两层 norms 的并行注意力/ MLP

其公布的超参数配置如下所示:

图片

Source: https://huggingface.co/tiiuae/falcon-40b?trk=cndc-detail

5.Flacon 40B 的性能

Falcon 40B 已被证明在多项基准测试中优于其他 LLM,包括 GLUE、SQuAD 和 RACE。它也被证明对于各种任务都有效,例如文本生成、机器翻译和问答。

Falcon 40B 模型的主要参数如下:

  • 参数:400 亿
  • 训练数据:1 万亿 Token
  • 架构:Transformer
  • 优化器:Adam
  • 损失函数:交叉熵
  • 评估指标:BLEU、ROUGE、F1

部署方式一:使用 Amazon SageMaker JumpStart 进行部署

本节将介绍在 Amazon SageMaker JumpStart 中,如何使用 SageMaker Python SDK 部署 Falcon 40B 开源大模型以生成文本。这个示例包括:

  1. 设置开发环境
  2. 获取全新 Falcon 40B 的开源大模型的 Hugging Face id 和版本
  3. 使用 JumpStartModel 函数部署 Falcon 40B 大模型
  4. 进行推理并与模型对话(包括代码生成、问题解答、翻译等)
  5. 清理环境
1.启动 Amazon SageMaker JumpStart 环境

1. 在亚马逊云科技控制台输入“Amazon SageMaker”。

图片

2. 点击“Studio”, 然后点击“Open Studio”。

图片

3. 点击“Launch -> Studio”。

图片

  1. 等待 Amazon SageMaker Studio 启动完成。

图片

  1. 点击“SageMaker JumpStart -> Models, notebooks, solutions”后,选择“Text Models -> Falcon 40B Instruct BF16”。

图片

  1. 选择“Run in notebook -> Open notebook”。

图片

  1. 等待“Starting notebook kernel…”启动完成后,就可以执行部署 Falcon 40B 开源大模型的示例代码了!

图片

本节实验的完整代码,可以在亚马逊云科技的 SageMaker 代码库中获得。

该实验完整代码的 GitHub 地址如下:

https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/jumpstart-foundation-models/text-generation-falcon.ipynb?trk=cndc-detail

感兴趣的开发者可以参考以上这个示例,逐个单元执行代码完成该实验。由于亚马逊云科技的这个 Notebook 写得清楚简洁,恕不在此赘述其详细代码细节,感兴趣的读者可自行参考前面步骤,建立执行环境并亲身体验。

部署方式二:使用 Amazon SageMaker Notebook 进行部署

本节将介绍如何使用新的 Hugging Face LLM 推理容器将开源大语言模型,比如 Falcon 40B 部署到 Amazon SageMaker 进行推理的示例。这个示例包括:

  1. 设置开发环境
  2. 获取全新 Hugging Face LLM DLC
  3. 将 Falcon 40B 部署到 Amazon SageMaker
  4. 进行推理并与模型对话
  5. 清理环境
1.设置开发环境

我们将使用 Amazon SageMaker python SDK 将 Falcon 40B 部署到终端节点用于模型推理。我们首先需要确保正确安装了 Amazon SageMaker python SDK。如下代码所示:

# install supported sagemaker SDK
!pip install "sagemaker>=2.175.0" --upgrade –quiet

import sagemaker
import boto3
sess = sagemaker.Session()
# sagemaker session bucket -> used for uploading data, models and logs
# sagemaker will automatically create this bucket if it not exists
sagemaker_session_bucket=None
if sagemaker_session_bucket is None and sess is not None:
    # set to default bucket if a bucket name is not given
    sagemaker_session_bucket = sess.default_bucket()

try:
    role = sagemaker.get_execution_role()
except ValueError:
    iam = boto3.client('iam')
    role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']

sess = sagemaker.Session(default_bucket=sagemaker_session_bucket)

print(f"sagemaker role arn: {role}")
print(f"sagemaker session region: {sess.boto_region_name}")

关于更多 Amazon SageMaker 所需权限的 IAM 角色详细配置说明,可以参考这个文档:

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.htm?trk=cndc-detail

2.获取 Hugging Face LLM DLC

Hugging Face LLM DLC 是一款全新的专用推理容器,可在安全的托管环境中轻松部署 LLM。DLC 由文本生成推理(TGI)提供支持,这是一种用于部署和服务大型语言模型(LLM)的开源、专门构建的解决方案。TGI 使用张量并行和动态批处理为最受欢迎的开源 LLM 实现高性能文本生成。借助于 Amazon SageMaker 上推出的全新 Hugging Face LLM Inference DLC,客户可以获得支持高并发、低延迟的 LLM 体验。

与部署常规 Hugging Face 模型相比,我们首先需要检索容器 uri 并将其提供给 HuggingFaceModel 模型类,并使用 image_uri 指向该镜像。要在 Amazon SageMaker 中检索新的 Hugging Face LLM DLC,我们可以使用 sagemaker SDK 提供的 get_huggingface_llm_image_uri 方法。此方法允许我们根据指定的后端、会话、区域和版本检索所需的 Hugging Face LLM DLC 的 URI。

所有可用的 HuggingFace LLM DLC 版本可参考:

https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-text-generation-inference-containers?trk=cndc-detail

from sagemaker.huggingface import get_huggingface_llm_image_uri

# retrieve the llm image uri
llm_image = get_huggingface_llm_image_uri(
  "huggingface",
  version="0.9.3"
)

# print ecr image uri
print(f"llm image uri: {llm_image}")
3.将 Falcon 40B 部署到 Amazon SageMaker 终端节

要将 Falcon 40b Instruct 部署到 Amazon SageMaker,我们需要创建 HuggingFaceModel 模型类并定义相关的端点配置,包括 hf_model_id、instance_type 等。本演示中,我们将使用带有 4 个 NVIDIA A10G GPU 和 96GB GPU 内存的 g5.12xlarge 实例类型。

另外,Amazon SageMaker 的配额可能因账户而异。如果超出配额,你可以通过以下服务配额控制台增加配额:

https://console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas?trk=cndc-detail

部署代码如下所示:

import json
from sagemaker.huggingface import HuggingFaceModel

# sagemaker config
instance_type = "ml.g5.12xlarge"
number_of_gpu = 4
health_check_timeout = 300

# TGI config
config = {
  'HF_MODEL_ID': "tiiuae/falcon-40b-instruct", # model_id from hf.co/models
  'SM_NUM_GPUS': json.dumps(number_of_gpu), # Number of GPU used per replica
  'MAX_INPUT_LENGTH': json.dumps(1024),  # Max length of input text
  'MAX_TOTAL_TOKENS': json.dumps(2048),  # Max length of the generation (including input text)
  # 'HF_MODEL_QUANTIZE': "bitsandbytes", # comment in to quantize
}

# create HuggingFaceModel
llm_model = HuggingFaceModel(
  role=role,
  image_uri=llm_image,
  env=config
)

细心的读者,会在上面的示例代码中找到一行注释掉的代码:

# 'HF_MODEL_QUANTIZE': "bitsandbytes", # comment in to quantize

关于量化(quantize)的知识范畴,是另一个有趣并宏大的知识领域,我们将在下一节 Falcon 40B 大模型微调的文章中,另外详细阐述。

创建 HuggingFaceModel 之后,我们就可以用 deploy 方法,将其部署到 Amazon SageMaker 的终端节点了,我们将使用 ml.g5.12xlarge 实例类型部署模型。文本生成推理(TGI) 将在所有 GPU 上自动分发和分片模型,如下代码所示:

# Deploy model to an endpoint
# https://sagemaker.readthedocs.io/en/stable/api/inference/model.html#sagemaker.model.Model.deploy
llm = llm_model.deploy(
  initial_instance_count=1,
  instance_type=instance_type,
  # volume_size=400, # If using an instance with local SSD storage, volume_size must be None, e.g. p4 but not p3
  container_startup_health_check_timeout=health_check_timeout, # 10 minutes to be able to load the model
)
4.进行推理并与模型对话

部署端点后,我们就可以使用 predict 方法,开始进行模型推理了。

我们可以使用不同的参数来控制生成,这些参数可以在 payload 的 parameters 属性中定义。Hugging Face LLM DLC 推理容器支持各种生成参数,包括 top_p、temperature、stop、max_new_token 等等。

你可以在以下文档中找到支持参数的完整列表:

https://huggingface.co/blog/sagemaker-huggingface-llm#4-run-inference-and-chat-with-our-model?trk=cndc-detail

截至今天,TGI 支持以下参数:

temperature:控制模型中的随机性。较低的值将使模型更具确定性,而较高的值将使模型更随机。默认值为 0。

max_new_tokens:要生成的最大 token 数量。默认值为 20,最大值为 512。

repeption_penalty:控制重复的可能性,默认为 null。

seed:用于随机生成的种子,默认为 null。

stop:用于停止生成的代币列表。生成其中一个 token 后,生成将停止。

top_k:用于 top-k 筛选时保留的最高概率词汇标记的数量。默认值为 null,它禁用 top-k 过滤。

top_p:用于核采样时保留的参数最高概率词汇标记的累积概率,默认为 null。

do_sample:是否使用采样;否则使用 greedy 解码。默认值为 false。

best_of:生成 best_of 序列如果是最高标记 logprobs 则返回序列,默认为 null。

details:是否返回有关生成的详细信息。默认值为 false。

return_full_text:是返回全文还是只返回生成的部分。默认值为 false。

truncate:是否将输入截断到模型的最大长度。默认值为 true。

typical_p:token 的典型概率。默认值为 null。

watermark:生成时使用的水印。默认值为 false。

因为我们部署的 tiiuae/falcon-40b-instruct 开源大模型,是一种对话聊天模型,我们可以使用以下提示词与大模型聊天了!如下所示:

# define payload
prompt = """You are an helpful Assistant, called Falcon. Knowing everyting about AWS.

User: Can you tell me something about Amazon SageMaker?
Falcon:"""

# hyperparameters for llm
payload = {
  "inputs": prompt,
  "parameters": {
    "do_sample": True,
    "top_p": 0.9,
    "temperature": 0.8,
    "max_new_tokens": 1024,
    "repetition_penalty": 1.03,
    "stop": ["\nUser:","<|endoftext|>","</s>"]
  }
}

# send request to endpoint
response = llm.predict(payload)

# print assistant respond
assistant = response[0]["generated_text"][len(prompt):]

LLM 的输出如下图所示。它会生成一段描述“Amazon SageMaker”的话:

图片

为方便读者们阅读,我把 LLM 的输出拷贝如下:

'Amazon SageMaker is a fully managed platform that enables developers and data scientists to quickly build, train, and deploy machine learning models in the cloud. It provides a wide range of tools and services, including Jupyter notebooks, algorithms, pre-trained models, and easy-to-use APIs, so you can quickly get started building machine learning applications.'

我们可以继续问 Falcon 40B 大模型问题,比如:

new_prompt = f"""{prompt}{assistant}
User: How would you recommend start using Amazon SageMaker? If i am new to Machine Learning?
Falcon:"""
# update payload
payload["inputs"] = new_prompt

# send request to endpoint
response = llm.predict(payload)

# print assistant respond
new_assistant = response[0]["generated_text"][len(new_prompt):]
print(new_assistant)

Falcon 40B 大模型给我的回答如下,供大家参考:

图片

为方便读者们阅读,我把 LLM 的输出拷贝如下:

'If you're new to machine learning, you can start with pre-built algorithms and pre-trained models available in Amazon SageMaker. You can also use Jupyter notebooks to create and run your own experiments. Additionally, you can take advantage of the AutoPilot feature to automatically build and train machine learning models based on your data. The best way to get started is to experiment and try different things to see what works best for your specific use case.'
5.删除资源和清理环境

我们已经把 Falcon 40B 的开源大模型部署到了 Amazon SageMaker 的终端节点上,并使用成功地进行了模型推理。完成这个实验后,请记得删除资源和清理环境,包括删除模型和端点,以避免产生不必要的费用。

删除资源和清理环境的示例代码,如下所示:

llm.delete_model()
llm.delete_endpoint()
6.参考文档

本节的部署方式主要参考以下英文文档,笔者在阐述过程中,做了些细化描述和文字调整:

https://www.philschmid.de/sagemaker-falcon-llm?trk=cndc-detailhttps://aws.amazon.com/cn/what-is/large-language-model/?trk=d...

比较和总结

本文我们分两个章节,分别用两种方式部署了 Falcon 40B 的开源大语言模型。

首先我们使用了 Amazon SageMaker JumpStart 进行了模型部署,其主要核心代码如下:

model_id, model_version = "huggingface-llm-falcon-40b-instruct-bf16", "*”

from sagemaker.jumpstart.model import JumpStartModel
my_model = JumpStartModel(model_id=model_id)
predictor = my_model.deploy()

其次,我们使用了 Amazon SageMaker Notebook 进行了模型部署,其主要核心代码如下:

# Retrieve the new Hugging Face LLM DLC
from sagemaker.huggingface import get_huggingface_llm_image_uri

# retrieve the llm image uri
llm_image = get_huggingface_llm_image_uri(
  "huggingface",
  version="0.8.2"
)

# print ecr image uri
print(f"llm image uri: {llm_image}")
#  Deploy Falcon 40B Model
from sagemaker.huggingface import HuggingFaceModel

# instance config
instance_type = "ml.g5.12xlarge"
number_of_gpu = 4
health_check_timeout = 300

# TGI config
config = {
      'HF_MODEL_ID': "tiiuae/falcon-40b-instruct", 
      ……
}

# create HuggingFaceModel
llm_model = HuggingFaceModel(
  role=role,
  image_uri=llm_image,
  env=config
)
llm = llm_model.deploy(
      ……
)

由上述核心代码量的对比可知,如果你是初学者并希望开箱即用,你可以选用 Amazon SageMaker JumpStart 这种快速简洁的部署方式;如果你对 Amazon SageMaker 服务已经有一定的了解,并希望在大模型部署过程,具有更细颗粒度的控制(例如:部署实例类型、image 的版本号、TGI 参数等)时,你就可以选择 Amaon SageMaker Notebook 这种更全面控制配置参数的部署方式。

在下一篇文章中,我们将探讨使用 Amazon SageMaker Notebook 在交互式环境中快速高效地微调大语言模型的话题。我们将使用 QLoRA 和 4-bits 的 bitsandbtyes 量化技术,在 Amazon SageMaker 上使用 Hugging Face PEFT 来微调 Falcon-40B 模型。这个话题在目前的开源大模型领域是一个前沿的先锋话题,尽请期待。

请持续关注 Build On Cloud 专栏,了解更多面向开发者的技术分享和云开发动态!

图片

 

文章来源:
https://dev.amazoncloud.cn/column/article/64de16134948d629b3ee6ac0?sc_medium=regulartraffic&sc_campaign=crossplatform&sc_channel=CSDN

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/105548.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

IC-705连接wfview

wfview是一款开源的主要针对ICOM的远程控制软件&#xff0c;可以通过USB或者无线控制电台&#xff0c;貌似还支持X6100。 IC-705支持WLAN功能&#xff0c;连接wfview非常方便。 IC-705的WLAN支持两种模式&#xff0c;一种是Station模式&#xff0c;可用于连接WI-FI路由器&#…

【考研数学】数学“背诵”手册 | 需要记忆且容易遗忘的知识点

文章目录 引言一、高数常见泰勒展开 n n n 阶导数公式多元微分函数连续、可微、连续可偏导之间的关系多元函数极值无条件极值条件极值 三角函数的积分性质华里士公式&#xff08; “点火”公式 &#xff09;特殊性质 原函数与被积函数的奇偶性结论球坐标变换公式 二、写在最后 …

python自动化测试(四):ECShop后台:商品分类添加

前置条件&#xff1a; 本地部署&#xff1a;ECShop的版本是3.0.0、Google版本是 Google Chrome65.0.3325.162 (正式版本) &#xff08;32 位&#xff09; Google驱动的selenium版本是3.11.0 目录 前置代码 一、登录&#xff08;后台登录&#xff09; 二、进入商品分类页…

JavaScript笔记(本文中将JavaScript简写为JS)

JS对大小写敏感 JS代码块的作用域都是全局的 JS的数组只能使用数字作为下标 JS对浮点型数据的精确度很难确定 JS在定义数组元素以及对象&#xff0c;在最后不能添加逗号 JS 中&#xff0c;变量可以在使用后声明&#xff0c;也就是变量可以先使用再声明&#xff0c;但不适用于已…

wkhtmltoimage/wkhtmltopdf 使用实践

1. 介绍 wkhtmltopdf/wkhtmltoimage 用于将简单的html页面转换为pdf或图片&#xff1b; 2.安装 downloads 2.1. mac os 下载64-bit 版本然后按照指示安装, 遇到 untrust developers 时&#xff0c;需要在 Settings -> Privacy 处信任下该安装包。 2.2. debian # 可用…

vscode代码快捷输入

Vscode代码片段快捷输入 常用的代码片段为了避免重复输入,可以使用Vsco的中用户代码片段进行设置,这样就可以实现快捷输入. 操作流程 如下 打开vscode的设置 2. 找到用户代码片段 3. 选择模板 4. 然后写入代码片段即可 上面的代码片段可以设置多个,看自己 重点关注的是 prefi…

05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces

1. Permutations P: execute row exchanges becomes PA LU for any invertible A Permutations P identity matrix with reordered rows mn (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations 对于nxn矩阵存在着n!个置换矩阵 , 2. Transpose: 2.…

p5.js 3D图形-立方体

本文简介 带尬猴&#xff0c;我嗨德育处主任 前面写了几篇 p5.js 文章 都还没涉及到3D图形&#xff0c;但其实 p5.js 是提供了基础的3D图形的。 本文就从最简单的立方体讲起&#xff0c;并做几个小demo和各位工友一起掌握立方体的用法。 立方体的基础用法 在 p5.js 里使用 b…

Ubuntu 内核降级到指定版本

reference https://www.cnblogs.com/leebri/p/16786685.html 前往此网站&#xff0c;找到所需的内核 https://kernel.ubuntu.com/~kernel-ppa/mainline/ 查看系统架构 dpkg --print-architecture 二、下载安装包 注意&#xff1a;下载除lowlatency以外的deb包 三、安装内核 3…

基于图像识别的跌倒检测算法 计算机竞赛

前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于图像识别的跌倒检测算法 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f9ff; 更多资料, 项目分享&#xff1a; https://gitee.com/dancheng-senior/…

FreeRTOS 事件标志组 详解

目录 什么是事件标志组&#xff1f; 事件标志位 事件标志组 事件标志组相关 API 函数 1. 创建事件标志组 2. 设置事件标志位 3. 清除事件标志位 4. 等待事件标志位 事件标志组实操 什么是事件标志组&#xff1f; 事件标志位 表明某个事件是否发生&#xff0c;联想&am…

优咔科技创新连接方案助力高质量5G车联服务

上海优咔网络科技有限公司 CEO 闫楠 【摘要】本文就智能网联汽车对高质量5G车联服务的需求背景和行业趋势进行了分析&#xff0c;主要介绍采用5G双SIM卡的创新连接方案&#xff0c;重点讲述双SIM卡联网的端到端体系架构和技术方案&#xff0c;并就优咔科技全方位支撑行业领先车…

设计模式—创建型模式之单例模式

设计模式—创建型模式之单例模式 介绍 单例模式说明&#xff1a;一个单一的类&#xff0c;负责创建自己的对象&#xff0c;同时确保系统中只有单个对象被创建。 单例模式特点&#xff1a; 某个类只能有一个实例&#xff1b;&#xff08;构造器私有&#xff09;它必须自行创…

【抓包分析】通过ChatGPT解密还原某软件登录算法实现绕过手机验证码登录

文章目录 &#x1f34b;前言实现效果成品广告抓包分析一、定位加密文件二、编辑JS启用本地替换 利用Chatgpt进行代码转换获取计划任务id模拟数据请求最后 &#x1f34b;前言 由于C站版权太多&#xff0c;所有的爬虫相关均为记录&#xff0c;不做深入&#xff01; 今天发现gith…

读图数据库实战笔记01_初识图

1. 图论 1.1. 起源于莱昂哈德欧拉在1736年发表的一篇关于“哥尼斯堡七桥问题”的论文 1.2. 要解决这个问题&#xff0c;该图需要零个或两个具有奇数连接的节点 1.3. 任何满足这一条件的图都被称为欧拉图 1.4. 如果路径只访问每条边一次&#xff0c;则该图具有欧拉路径 1.5…

【华为路由器】配置企业通过5G链路接入Internet示例

场景介绍 5G Cellular接口是路由器用来实现5G技术的物理接口&#xff0c;它为用户提供了企业级的无线广域网接入服务&#xff0c;主要用于eMBB场景。与LTE相比&#xff0c;5G系统可以为企业用户提供更大带宽的无线广域接入服务。 路由器的5G功能&#xff0c;可以实现企业分支…

贪心算法学习——单调递增的数字

一&#xff0c;单调递增的数字 1.题目 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时&#xff0c;我们称这个整数是单调递增的。 给定一个整数 n &#xff0c;返回 小于或等于 n 的最大数字&#xff0c;且数字呈 单调递增 。 示例 1: 输入: n 10 输出: 9示例 2: 输入…

智能问答技术在百度搜索中的应用

作者 | Xiaodong 导读 本文主要介绍了智能问答技术在百度搜索中的应用。包括机器问答的发展历程、生成式问答、百度搜索智能问答应用。欢迎大家加入百度搜索团队&#xff0c;共同探索智能问答技术的发展方向&#xff0c;文末有简历投递方式。 全文6474字&#xff0c;预计阅读时…

8.稳定性专题

1. anr https://code84.com/303466.html 一句话&#xff0c;规定的时间没有干完要干的事&#xff0c;就会发生anrsystem_anr场景 input 5sservice 前台20s 后台60scontentprivider超市 比较少见 原因 主线程耗时 复杂layout iobinder对端block子线程同步锁blockbinder被占满导…

vr虚拟现实技术融入司法办案实操培训中的优势

模拟法院诉讼一直室各大法学院法律实践性教学的重要方式和内容&#xff0c;通过让学员在模拟环境中实操一遍诉讼流程及相关资料&#xff0c;达到上岗就业的教学目标。 学生可以选择法官席、律师席、证人席等不同角色进行体验&#xff0c;在VR模拟法庭中进行案件审判和辩论&…