一,单调递增的数字
1.题目
当且仅当每个相邻位数上的数字
x
和y
满足x <= y
时,我们称这个整数是单调递增的。给定一个整数
n
,返回 小于或等于n
的最大数字,且数字呈 单调递增 。示例 1:
输入: n = 10 输出: 9示例 2:
输入: n = 1234 输出: 1234示例 3:
输入: n = 332 输出: 299
2.题目接口
class Solution {
public:
int monotoneIncreasingDigits(int n) {
}
};
3.解题思路及其代码
暴力法解题步骤:
1.首先用for循环从n开始遍历直到遍历到0.
2.将遍历到的数字转换成字符串(使用to_string)。
3.使用while循环用两个指针指向字符串的前后两位,如果前面的大于后面的字符便break。如果不是便继续移动指针知道到了字符串的结尾。
3.出来时判断一下我的第二个字符串是否指向str.size()位,如果是便返回这个数字。如果不是便继续循环。
代码如下:
class Solution { public: int monotoneIncreasingDigits(int n) { for(int i = n;i>=0;i--) { string str = to_string(i); int pre = 0; int last = 1; while(last<str.size()) { if(str[pre]>str[last]) { break; } pre++; last++; } if(last == str.size()) { return i; } } return -1; } };
但是提交以后会超时:
这就说明我们的思路是对的但是我们的代码还需要改进一下。
贪心解法步骤:
先来举个例子:
n == 1234158,这时我们该输出什么答案呢?经过计算可知答案应该是:1233999
n == 1255516, 这时我们该输出什么答案呢?经过计算可知答案应该是: 1249999
n == 1101, 这时我们该输出什么答案呢?经过计算可知答案应该是: 999
从这些例子可以发现,我们的比n小找到一个最大的递增数字的操作是:
1.先从零下标开始找到最大的递增下标。
2.找到后看看前面有没有连续相等的情况,若有便往前找,找到下标最小连续相等的情况。
3.开始将找到的这个下标减1,再将这个下标后面的数字都变成9.
代码如下:
class Solution { public: int monotoneIncreasingDigits(int n) { string str = to_string(n);//将n转换成字符串 int m = str.size();//计算长度 int i = 0; while(i+1<=m&&str[i]<=str[i+1])i++;//递增便++i. if(i+1 == m)//若这个字符完全都是递增的便直接返回 { return stoi(str); } while(i-1>=0&&str[i-1]==str[i])i--;//若有连续相等的便找到最小下标的那个数 str[i]--;//改变这个数,若是0便会变成-1,会被舍弃掉减小位数。 for(int j = i+1;j<m;j++)//将后面的变为9便可以得到最大的递增序列。 { str[j] = '9'; } return stoi(str);//转为数字返回 } };
过啦: