【目标跟踪】多目标跟踪测距

文章目录

  • 前言
  • python代码(带注释)
    • main.py
    • sort.py
    • kalman.py
    • distance.py
  • 结语

前言

  • 放效果图。目标框内左上角,显示的是目标距离相机的纵向距离。目标横向距离、速度已求出,没在图片展示。
  • 这里不仅仅实现对目标检测框的跟踪,且可以实现单相机进行对目标进行测距跟踪。
  • 想了解详细原理可以参考往期博客:【目标跟踪】多目标跟踪sort (python 代码) 。这里不过多赘述,直接上代码,如有疑问,欢迎私信交流。

在这里插入图片描述


python代码(带注释)

  • 代码输入:1、连续帧图片,2、每帧图片的检测结果。(需要数据的可以私信我)
  • 代码参考:git地址
  • 输出结果以视频形式保存

在这里插入图片描述

main.py

检测结果为 det.txt ,图片格式为 000001.jpg 。用的是跟踪挑战开源数据。
这部分代码主要是加载检测数据,读取图片。调用跟踪与测距接口进行计算
可以设置 dispaly 与 video_save 是否 show 图片 与保存视频
x_p 里面包含目标离相机纵向与横向距离,还有速度、加速度。可以自行更改 putText 图片展示信息

import os
import cv2
from sort import *

if __name__ == '__main__':
    display, video_save = False, True  # 是否show,结果是否存视频
    max_age, min_hits, iou_threshold = 3, 3, 0.3  # sort算法参数
    colours = 255 * np.random.rand(32, 3)  # 随机生产颜色
    video = cv2.VideoWriter("video.mp4", cv2.VideoWriter_fourcc('m', 'p', '4', 'v'), 10,
                            (1920, 1080)) if video_save else None
    mot_tracker = Sort(max_age=max_age, min_hits=min_hits, iou_threshold=iou_threshold)  # 创建sort跟踪器
    seq_dets = np.loadtxt("det.txt", delimiter=',')  # 加载检测txt结果
    for frame in range(int(seq_dets[:, 0].max())):
        frame += 1  # 从1帧开始
        dets = seq_dets[seq_dets[:, 0] == frame, 2:7]
        dets[:, 2:4] += dets[:, 0:2]  # [x1,y1,w,h] to [x1,y1,x2,y2] 左上角x1,y1,w,h ——>左上角x1,y1,右下角x2,y2
        mot_tracker.update(dets)  # kalman 预测与更新
        trackers = mot_tracker.trackers
        image_path = os.path.join(".\\img", '%06d.jpg' % (frame))  # 图片路径
        image = cv2.imread(image_path)
        # x_p 目标横向、纵向距离。速度以及加速度
        for d, x_p in trackers:
            x1, y1, w, h = d.get_state()[0]  # 获取 当前目标框状态
            id = d.id
            color = colours[int(id) % 32, :]
            color = (int(color[0]), int(color[1]), int(color[2]))
            cv2.rectangle(image, (int(x1), int(y1)), (int(w), int(h)), color, 3)  # 画框
            cv2.putText(image, str(int(id)), (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 1,
                        color, 3)  # 画id
            cv2.putText(image, str(np.round(x_p[0][0], 2)), (int(x1), int(y1) + 30),
                        cv2.FONT_HERSHEY_SIMPLEX, 1,
                        color, 3)  # 画距离
        if display:
            cv2.namedWindow("show")
            cv2.imshow("show", image)
            cv2.waitKey(0)
        if video_save:
            video.write(image)


sort.py

这部分代码为核心计算代码,主要调用 kalman 预测 predict 与 更新 update
在跟踪航迹 self.trackers 里面添加距离信息,也进行一个预测与更新,不参与匹配权重的运算。
主要对测距起到一个平滑的作用。

from __future__ import print_function
from kalman import *
from distance import *


def linear_assignment(cost_matrix):
    try:
        import lap
        _, x, y = lap.lapjv(cost_matrix, extend_cost=True)
        return np.array([[y[i], i] for i in x if i >= 0])  #
    except ImportError:
        from scipy.optimize import linear_sum_assignment
        x, y = linear_sum_assignment(cost_matrix)
        return np.array(list(zip(x, y)))


def iou_batch(bb_test, bb_gt):
    bb_gt = np.expand_dims(bb_gt, 0)
    bb_test = np.expand_dims(bb_test, 1)

    xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0])
    yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1])
    xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2])
    yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3])
    w = np.maximum(0., xx2 - xx1)
    h = np.maximum(0., yy2 - yy1)
    wh = w * h
    o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1])
              + (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh)
    return (o)


def associate_detections_to_trackers(detections, trackers, iou_threshold=0.3):
    if (len(trackers) == 0):
        return np.empty((0, 2), dtype=int), np.arange(len(detections)), np.empty((0, 5), dtype=int)

    iou_matrix = iou_batch(detections, trackers)

    if min(iou_matrix.shape) > 0:
        a = (iou_matrix > iou_threshold).astype(np.int32)
        if a.sum(1).max() == 1 and a.sum(0).max() == 1:
            matched_indices = np.stack(np.where(a), axis=1)
        else:
            matched_indices = linear_assignment(-iou_matrix)
    else:
        matched_indices = np.empty(shape=(0, 2))

    unmatched_detections = []
    for d, det in enumerate(detections):
        if (d not in matched_indices[:, 0]):
            unmatched_detections.append(d)
    unmatched_trackers = []
    for t, trk in enumerate(trackers):
        if (t not in matched_indices[:, 1]):
            unmatched_trackers.append(t)

    matches = []
    for m in matched_indices:
        if (iou_matrix[m[0], m[1]] < iou_threshold):
            unmatched_detections.append(m[0])
            unmatched_trackers.append(m[1])
        else:
            matches.append(m.reshape(1, 2))
    if (len(matches) == 0):
        matches = np.empty((0, 2), dtype=int)
    else:
        matches = np.concatenate(matches, axis=0)

    return matches, np.array(unmatched_detections), np.array(unmatched_trackers)


class Sort(object):
    def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3):
        self.max_age = max_age
        self.min_hits = min_hits
        self.iou_threshold = iou_threshold
        self.trackers = []
        self.frame_count = 0
        self.distance_kalman = Distance(0.1)  # 0.1s 1s 十帧
        self.p = np.eye(6)  # 初始化协方差
        self.r_t = np.array(
            [0, 0, 1, 0,
             1, 0, 0, 0,
             0, 1, 0, 1.2,
             0., 0., 0., 1.]).reshape(4, 4)  # 相机外参
        self.k = np.array([1000, 0.0, 960, 0.0, 1000, 540, 0.0, 0.0, 1.0]).reshape(3, 3)  # 相机内参
        self.h = 1.2  # 相机离地面高度 1.2 m
        self.pitch = 0  # 相机 pitch (俯仰角)

    def update(self, dets=np.empty((0, 5))):
        self.frame_count += 1
        # 根据上一帧航迹的框 预测当前帧的框.
        trks = np.zeros((len(self.trackers), 5))
        to_del, ret = [], []
        for t, trk in enumerate(trks):
            pos = self.trackers[t][0].predict()[0]  # 预测框的状态
            self.trackers[t][1] = self.distance_kalman.predict_kalman(self.trackers[t][1])  # 预测距离的状态
            trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
            if np.any(np.isnan(pos)):
                to_del.append(t)
        trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
        for t in reversed(to_del):
            self.trackers.pop(t)
        # 匈牙利匹配 上一帧预测框与当前帧检测框进行 iou 匹配
        matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets, trks, self.iou_threshold)
        # 如果匹配上 则更新修正当前检测框
        for m in matched:
            det = dets[m[0], :]
            distance = get_distance((det[0] + det[2]) / 2, det[3], self.h, self.pitch, self.k, self.r_t[:3, :3],
                                    self.r_t[:3, 3])
            self.trackers[m[1]][1] = self.distance_kalman.updata_kalman([distance[0], distance[1]],
                                                                        self.trackers[m[1]][1])
            self.trackers[m[1]][0].update(det)
        # 如果检测框未匹配上,则当作新目标,新起航迹
        for i in unmatched_dets:
            det = dets[i, :]
            distance = get_distance((det[0] + det[2]) / 2, det[3], self.h, self.pitch, self.k, self.r_t[:3, :3],
                                    self.r_t[:3, 3])  # 目标测距
            # 目标状态 (x,y,vx,vy,ax,ay) kalman协方差
            x_p = (np.array([[distance[0], 0, 0, distance[1], 0, 0]]).T, self.p)
            trk = [KalmanBoxTracker(det), x_p]
            self.trackers.append(trk)
        i = len(self.trackers)
        for trk in reversed(self.trackers):
            d = trk[0].get_state()[0]
            if (trk[0].time_since_update < 1) and (
                    trk[0].hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
                ret.append(np.concatenate((d, [trk[0].id + 1])).reshape(1, -1))  # +1 as MOT benchmark requires positive
            i -= 1
            # 如果超过self.max_age(3)帧都没有匹配上,则应该去除这个航迹
            if (trk[0].time_since_update > self.max_age):
                self.trackers.pop(i)
        if (len(ret) > 0):
            return np.concatenate(ret)
        return np.empty((0, 5))

kalman.py

这部分代码是 kalman 算法核心代码
主要对目标框 bbox 进行预测与更新。bbox 状态为 [center_x, center_y, s, r, center_x’, center_y’, s’]
s = w * h r = w / h bbox 宽高比保持不变

import numpy as np
from filterpy.kalman import KalmanFilter


def convert_bbox_to_z(bbox):
    w = bbox[2] - bbox[0]
    h = bbox[3] - bbox[1]
    x = bbox[0] + w / 2.
    y = bbox[1] + h / 2.
    s = w * h
    r = w / float(h)
    return np.array([x, y, s, r]).reshape((4, 1))


def convert_x_to_bbox(x, score=None):
    w = np.sqrt(x[2] * x[3])
    h = x[2] / w
    if (score == None):
        return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4))
    else:
        return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5))


class KalmanBoxTracker(object):
    count = 0

    def __init__(self, bbox):
        self.kf = KalmanFilter(dim_x=7, dim_z=4)
        self.kf.F = np.array(
            [[1, 0, 0, 0, 1, 0, 0],
             [0, 1, 0, 0, 0, 1, 0],
             [0, 0, 1, 0, 0, 0, 1],
             [0, 0, 0, 1, 0, 0, 0],
             [0, 0, 0, 0, 1, 0, 0],
             [0, 0, 0, 0, 0, 1, 0],
             [0, 0, 0, 0, 0, 0, 1]])
        self.kf.H = np.array(
            [[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]])

        self.kf.R[2:, 2:] *= 10.
        self.kf.P[4:, 4:] *= 1000.
        self.kf.P *= 10.
        self.kf.Q[-1, -1] *= 0.01
        self.kf.Q[4:, 4:] *= 0.01

        self.kf.x[:4] = convert_bbox_to_z(bbox)
        self.time_since_update = 0
        self.id = KalmanBoxTracker.count
        KalmanBoxTracker.count += 1
        self.history = []
        self.hits = 0
        self.hit_streak = 0
        self.age = 0

    def update(self, bbox):
        self.time_since_update = 0
        self.history = []
        self.hits += 1
        self.hit_streak += 1
        self.kf.update(convert_bbox_to_z(bbox))

    def predict(self):
        if ((self.kf.x[6] + self.kf.x[2]) <= 0):
            self.kf.x[6] *= 0.0
        self.kf.predict()
        self.age += 1
        if (self.time_since_update > 0):
            self.hit_streak = 0
        self.time_since_update += 1
        self.history.append(convert_x_to_bbox(self.kf.x))
        return self.history[-1]

    def get_state(self):
        return convert_x_to_bbox(self.kf.x)

distance.py

这部分代码是测距核心代码,以及对目标测距的预测与更新
目标状态为 (x,y,vx,vy,ax,ay) 目标横向距离,纵向距离,横向速度,纵向速度,横向加速度,纵向加速度。
关于目标前后帧匹配,是利用 iou 匹配进行的,所以要基于目标检测框的匹配跟踪。

import numpy as np


def get_distance(pixe_x, pixe_y, h, pitch, K, R, T):
    sigma = np.arctan((pixe_y - K[1][2]) / K[1][1])
    z = h * np.cos(sigma) / np.sin(sigma + pitch)  # 深度
    x_pixe, y_pixe = 2 * K[0][2] - pixe_x, 2 * K[1][2] - pixe_y
    camera_x = z * (x_pixe / K[0][0] - K[0][2] / K[0][0])
    camera_y = z * (y_pixe / K[1][1] - K[1][2] / K[1][1])
    camera_z = z
    x = R[0][0] * camera_x + R[0][1] * camera_y + R[0][2] * camera_z + T[0]
    y = R[1][0] * camera_x + R[1][1] * camera_y + R[1][2] * camera_z + T[1]
    # z = R[2][0] * camera_x + R[2][1] * camera_y + R[2][2] * camera_z + T[2]
    return x, y


class Distance():
    def __init__(self, t):
        self.t = t  # 时间间隔0.1s
        self.F = np.array([[1, t, t * t / 2, 0, 0, 0],
                           [0, 1, t, 0, 0, 0],
                           [0, 0, 1, 0, 0, 0],
                           [0, 0, 0, 1, t, t * t / 2],
                           [0, 0, 0, 0, 1, t],
                           [0, 0, 0, 0, 0, 1]])
        self.sigma_a = 0.02  # 加速度误差0.2m/s2
        self.sigma_x, self.sigma_y = 0.3, 0.2  # x、y测量距离误差
        self.Q = np.array([[np.power(t, 4) / 4, np.power(t, 3) / 3, np.power(t, 2) / 2, 0, 0, 0],
                           [np.power(t, 3) / 3, np.power(t, 2) / 2, t, 0, 0, 0],
                           [np.power(t, 2) / 2, t, 1, 0, 0, 0],
                           [0, 0, 0, np.power(t, 4) / 4, np.power(t, 3) / 3, np.power(t, 2) / 2],
                           [0, 0, 0, np.power(t, 3) / 3, np.power(t, 2) / 2, t],
                           [0, 0, 0, np.power(t, 2) / 2, t, 1]]) * self.sigma_a * self.sigma_a  # 过程噪声矩阵
        self.R_n = np.array([[self.sigma_x ** 2, 0], [0, self.sigma_y ** 2]])  # 测量噪声协方差
        self.H = np.array([[1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]])

    def updata_kalman(self, Z, X_P):
        """
        :param Z:测量值
        :param X:状态矩阵   [x,vx,ax,y,vy,ay]
        :param P:状态协方差矩阵
        :return:更新后的X,P
        """
        X, P = X_P
        # print(H @ P @ H.T)
        Z_1 = np.array([Z]).T
        # print(Z_1)
        K = P @ np.transpose(self.H) @ np.linalg.inv(np.dot(np.dot(self.H, P), np.transpose(self.H)) + self.R_n)
        # print(H @ K)
        X = X + K @ (Z_1 - self.H @ X)
        P = (np.identity(6) - K @ self.H) @ P @ np.transpose(np.identity(6) - K @ self.H) + K @ self.R_n @ np.transpose(
            K)
        return X, P

    def predict_kalman(self, X_P):
        X, P = X_P
        X = self.F @ X
        P = self.F @ P @ np.transpose(self.F) + self.Q
        return X, P

结语

  • 运行 main.py ,结果会保存视频。博主在本地是跑通的,如果有什么疑问,可以私信交流。
  • 关于数据,我是在网上找的开源数据跑的。相机的参数是模拟的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/104676.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ios上架上传构建版本的windows工具

ios上架的必要步骤&#xff0c;是将打包好的二进制ipa文件&#xff0c;上传到app store的构建版本里&#xff0c;苹果并没有提供上传构建版本的工具&#xff0c;这里我介绍下windows下上传构建版本的方案。 下面说下上传的基本步骤&#xff1a; 第一步&#xff0c;上传前要先…

2023年中国医疗器械供应链服务平台发展趋势分析:向国家高端化市场发力[图]

医疗器械供应链服务主要分为全流程供应链服务与院内SPD服务&#xff0c;同时全流程供应链服务主要分为市场、仓储物流与金融三大服务。在SPD数字化赋能下&#xff0c;大数据、云计算等技术支撑促进一站式数字化供应链业务协同平台&#xff0c;带动了整体医疗器械供应链服务的发…

Homeassistant docker配置

Homeassistant docker配置 【说明】本系列为自用教程&#xff0c;记录以便下次使用 【背景】一台J1900 4G64G的小主机&#xff0c;安装了OP系统&#xff0c;里面自带了Docker。为实现Homeassistant&#xff08;简称HA&#xff09;控制智能家居设备&#xff0c;进行如下配置。 【…

uni-app配置微信开发者工具

一、配置微信开发者工具路径 工具->设置->运行配置->小程序运行配置->微信开发者工具路径 二、微信开发者工具开启服务端口

SpringBoot依赖和代码分开打包

前言 在公司的项目中&#xff0c;一个SpringBoot工程可能就上百MB&#xff0c;这时候当线上网速不佳的时候&#xff0c;部署起来就十分的痛苦了。。经常等好久才能上传完毕&#xff0c;接下来我来教大家一个SpringBoot工程代码和依赖分开打包的方法。这种方法将依赖和代码分开…

AWS SAA-C03考试知识点整理

S3&#xff1a; 不用于数据库功能 分类&#xff1a; S3 Standard &#xff1a;以便频繁访问 S3 Standard-IA 或 S3 One Zone-IA &#xff1a; 不经常访问的数据 Glacier&#xff1a; 最低的成本归档数据 S3 Intelligent-Tiering智能分层 &#xff1a;存储具有不断变化或未知访问…

Linux虚拟网络设备—Veth Pair

veth是Virtual Ethernet Device的缩写&#xff0c;是一种成对出现的Linux虚拟网络接口设备。它最常用的功能是用于将不同的Linux network namespaces 命名空间网络连接起来&#xff0c;让二个namespaces之间可以进行通信。我们可以简单的把veth pair理解为用一根网线&#xff0…

使用Scala和Sttp库编写爬虫程序

以下是一个使用Scala和Sttp库编写的视频爬虫程序&#xff0c;该程序使用了proxy来获取IP。请注意&#xff0c;这个示例需要在上找到一个具体的视频链接&#xff0c;然后将其传递给crawlVideo函数。 import scala.util.{Failure, Success} import scala.concurrent.{Future, Ex…

TCP网络通信

TCP通信的 实现发1收1 package TCP1;//完成TCP通信的 实现发1收1import java.io.DataOutputStream; import java.io.ObjectOutputStream; import java.io.OutputStream; import java.net.InetAddress; import java.net.Socket;public class Client {public static void main(S…

数据结构之队列(源代码➕图解➕习题)

前言 在学过栈之后&#xff0c;会了解到栈的底层是根据顺序表或者链表来构建的&#xff0c;那么我们今天要学习的队列是否也是基于顺序表和链表呢&#xff1f;那我们直接进入正题吧&#xff01; 1. 队列的概念&#xff08;图解&#xff09; 还是跟上节一样&#xff0c;依旧用图…

Python3打印九九乘法表

# 九九乘法表 # 定义行数 i 1while i<9:# 定义列数j 1while j<i: # print(" %d * %d %d\t" %(j,i,(j*i)),end) # \t:对齐;end:不换行&#xff1b;j1i1print() # 必须添加这句话&#xff01;&#xff01;&#xff01;print("九九乘法表打印完毕&#xf…

HiveSQL分位数函数percentile()使用详解+实例代码

目录 前言 一、percentile() 二、percentile_approx() 点关注&#xff0c;防走丢&#xff0c;如有纰漏之处&#xff0c;请留言指教&#xff0c;非常感谢 前言 作为数据分析师每个SQL数据库的函数以及使用技能操作都得点满&#xff0c;尤其是关于统计函数的使用方法。关于统…

C语言系统化精讲(六):C语言选择结构和循环结构

文章目录 一、C语言选择结构1.1 if语句1.2 if…else语句1.3 else if语句1.4 if语句的嵌套1.5 条件运算符1.6 switch语句的基本形式1.7 多路开关模式的switch语句1.8 if…else语句和switch语句的区别 二、C语言循环结构2.1 C语言while循环和do while循环详解2.1.1 while循环2.1.…

【Python】Windows跟随程序启动和关闭系统代理

前言 在日常使用计算机时&#xff0c;偶尔可能需要配置代理来访问特定的网络资源或进行网络调试。 当在使用mitmproxy 时候&#xff0c; 程序开始前&#xff0c;需要手动打开系统代理&#xff1b;程序结束后&#xff0c;需要手动关闭系统代理。 这些重复性且没有技术含量工作…

C++智能指针[下](shared_ptr/weak_ptr/循环引用/删除器)

文章目录 4.智能指针[shared_ptr]4.1设计理念成员属性 4.2主要接口拷贝构造 4.3引用计数线程安全问题测试线程安全通过对计数引用的加锁保护使得类线程安全类实例化的对象使用时需要手动加锁保护 "锁"的引进线程引用传参问题 4.4整体代码 5.循环引用问题5.1问题的引入…

Java多线程秘籍,掌握这5种方法,让你的代码优化升级

介绍5种多线程方法&#xff0c;助您提高编码效率&#xff01; 如果您的应用程序与那些能够同时处理多个任务的应用程序相比表现不佳&#xff0c;很可能是因为它是单线程的。解决这个问题的方法之一是采用多线程技术。 以下是一些可以考虑的方法&#xff1a; 线程&#xff08;…

超声波测距与倒车雷达电路1

文章目录 超声测距 超声测距 超声测距跟倒车雷达绝大多数用的都是40kHz 接受是一个同相比例整流后加上一个比较器 换能器自带滤波&#xff0c;需要激发信号与换能器信号匹配 这个电路图是错的&#xff0c;一直不停的发&#xff0c;底下来不及收 频率越高传输距离…

解决使用WebTestClient访问接口报[185c31bb] 500 Server Error for HTTP GET “/**“

解决使用WebTestClient访问接口报[185c31bb] 500 Server Error for HTTP GET "/**" 问题发现问题解决 问题发现 WebTestClient 是 Spring WebFlux 框架中提供的用于测试 Web 请求的客户端工具。它可以不用启动服务器&#xff0c;模拟发送 HTTP 请求并验证服务器的响…

电脑怎么共享屏幕?电脑屏幕共享软件分享!

如何控制某人的电脑屏幕&#xff1f; 有时我们可能需要远程控制某人的计算机屏幕&#xff0c;例如&#xff0c;为我们的客户提供远程支持&#xff0c;远程帮助朋友或家人解决计算机问题&#xff0c;或在家中与同事完成团队合作。那么&#xff0c;电脑怎么共享屏幕&#xff…

SD-WAN让跨境网络访问更快、更安全!

目前许多外贸企业都面临着跨境网络不稳定、不安全的问题&#xff0c;给业务合作带来了很多困扰。但是&#xff0c;现在有一个解决方案能够帮助您解决这些问题&#xff0c;让您的跨境网络访问更快、更安全&#xff0c;那就是SD-WAN&#xff01; 首先&#xff0c;让我们来看看SD-…