pytorch搭建ResNet50实现鸟类识别

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客

  • 🍦 参考文章地址: 365天深度学习训练营-第J1周:ResNet-50算法实战与解析

  • 🍖 作者:K同学啊

理论知识储备

深度残差网络ResNet(deep residual network)在2015年由何凯明等提出,因为它简单与实用并存,随后很多研究都是建立在ResNet-50或者ResNet-101基础上完成的。

ResNet主要解决深度卷积网络在深度加深时候的“退化”问题。 在一般的卷积神经网络中,增大网络深度后带来的第一个问题就是梯度消失、爆炸,这个问题在Szegedy提出BN后被顺利解决。BN层能对各层的输出做归一化,这样梯度在反向层层传递后仍能保持大小稳定,不会出现过小或过大的情况。但是作者发现加了BN后,再加大深度仍然不容易收敛,其提到了第二个问题——准确率下降问题:层级大到一定程度时,准确率就会饱和,然后迅速下降。这种下降既不是梯度消失引起的,也不是过拟合造成的,而是由于网络过于复杂,以至于光靠不加约束的放养式的训练很难达到理想的错误率。准确率下降问题不是网络结构本身的问题,而是现有的训练方式不够理想造成的。当前广泛使用的训练方法,无论是SGD,还是RMSProp,或是Adam,都无法在网络深度变大后达到理论上最优的收敛结果。还可以证明只要有理想的训练方式,更深的网络肯定会比较浅的网络效果要好。证明过程也很简单:假设在一种网络A的后面添加几层形成新的网络B,如果增加的层级只是对A的输出做了个恒等映射(identity mapping),即A的输出经过新增的层级变成B的输出后没有发生变化,这样网络A和网络B的错误率就是相等的,也就证明了加深后的网络不会比加深前的网络效果差。
 

一、前期准备

1.设置GPU

import torch
from torch import nn
import torchvision
from torchvision import transforms,datasets,models
import matplotlib.pyplot as plt
import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')

2.导入数据

data_dir = './J1/'
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*/*.jpg')))
print("图片总数为:",image_count)
图片总数为: 565
classNames = [str(path).split('\\')[2] for path in data_dir.glob('bird_photos/*/')]
classNames
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
train_transforms = transforms.Compose([
        transforms.Resize([224, 224]),
       transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选
#       transforms.CenterCrop(224),#从中心开始裁剪
        transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率
#         transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转
#         transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
#         transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=B
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差
    ])

# test_transforms = transforms.Compose([
#         transforms.Resize([224, 224]),
#         transforms.ToTensor(),
#         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
#     ])
total_data = datasets.ImageFolder('./J1/bird_photos/',transform=train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 565
    Root location: ./J1/bird_photos/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=PIL.Image.BILINEAR)
               RandomRotation(degrees=[-45.0, 45.0], resample=False, expand=False)
               RandomHorizontalFlip(p=0.5)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
classNames = total_data.classes
classNames
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
total_data.class_to_idx
{'Bananaquit': 0,
 'Black Skimmer': 1,
 'Black Throated Bushtiti': 2,
 'Cockatoo': 3}

3.数据集划分

train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset
(<torch.utils.data.dataset.Subset at 0x1a6883fe310>,
 <torch.utils.data.dataset.Subset at 0x1a6883fe370>)
train_size,test_size
(452, 113)
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
imgs, labels = next(iter(train_dl))
imgs.shape
torch.Size([32, 3, 224, 224])

4. 数据可视化

import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    npimg = imgs.numpy().transpose((1,2,0))
    npimg = npimg * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
    npimg = npimg.clip(0, 1)
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg)
    plt.axis('off')

for X,y in test_dl:
    print('Shape of X [N, C, H, W]:', X.shape)
    print('Shape of y:', y.shape)
    break
Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])
Shape of y: torch.Size([32])

二、构建ResNet50网络

n_class = 4
''' Same Padding '''
def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


''' Identity Block '''
class IdentityBlock(nn.Module):
    def __init__(self, in_channel, kernel_size, filters):
        super(IdentityBlock, self).__init__()
        filters1, filters2, filters3 = filters
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, filters1, 1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(filters1),
            nn.ReLU(True)
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(filters1, filters2, kernel_size, stride=1, padding=autopad(kernel_size), bias=False),
            nn.BatchNorm2d(filters2),
            nn.ReLU(True)
        )
        self.conv3 = nn.Sequential(
            nn.Conv2d(filters2, filters3, 1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(filters3)
        )
        self.relu = nn.ReLU(True)
    
    def forward(self, x):
        x1 = self.conv1(x)
        x1 = self.conv2(x1)
        x1 = self.conv3(x1)
        x = x1 + x
        self.relu(x)
        return x


''' Conv Block '''
class ConvBlock(nn.Module):
    def __init__(self, in_channel, kernel_size, filters, stride=2):
        super(ConvBlock, self).__init__()
        filters1, filters2, filters3 = filters
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channel, filters1, 1, stride=stride, padding=0, bias=False),
            nn.BatchNorm2d(filters1),
            nn.ReLU(True)
        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(filters1, filters2, kernel_size, stride=1, padding=autopad(kernel_size), bias=False),
            nn.BatchNorm2d(filters2),
            nn.ReLU(True)
        )
        self.conv3 = nn.Sequential(
            nn.Conv2d(filters2, filters3, 1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(filters3)
        )
        self.conv4 = nn.Sequential(
            nn.Conv2d(in_channel, filters3, 1, stride=stride, padding=0, bias=False),
            nn.BatchNorm2d(filters3)
        )
        self.relu = nn.ReLU(True)
    
    def forward(self, x):
        x1 = self.conv1(x)
        x1 = self.conv2(x1)
        x1 = self.conv3(x1)
        x2 = self.conv4(x)
        x = x1 + x2
        self.relu(x)
        return x


''' 构建ResNet-50 '''
class ResNet50(nn.Module):
    def __init__(self, classes=1000):
        super(ResNet50, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 64, 7, stride=2, padding=3, bias=False, padding_mode='zeros'),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0)
        )
        self.conv2 = nn.Sequential(
            ConvBlock(64, 3, [64, 64, 256], stride=1),
            IdentityBlock(256, 3, [64, 64, 256]),
            IdentityBlock(256, 3, [64, 64, 256])
        )
        self.conv3 = nn.Sequential(
            ConvBlock(256, 3, [128, 128, 512]),
            IdentityBlock(512, 3, [128, 128, 512]),
            IdentityBlock(512, 3, [128, 128, 512]),
            IdentityBlock(512, 3, [128, 128, 512])
        )
        self.conv4 = nn.Sequential(
            ConvBlock(512, 3, [256, 256, 1024]),
            IdentityBlock(1024, 3, [256, 256, 1024]),
            IdentityBlock(1024, 3, [256, 256, 1024]),
            IdentityBlock(1024, 3, [256, 256, 1024]),
            IdentityBlock(1024, 3, [256, 256, 1024]),
            IdentityBlock(1024, 3, [256, 256, 1024])
        )
        self.conv5 = nn.Sequential(
            ConvBlock(1024, 3, [512, 512, 2048]),
            IdentityBlock(2048, 3, [512, 512, 2048]),
            IdentityBlock(2048, 3, [512, 512, 2048])
        )
        self.pool = nn.AvgPool2d(kernel_size=7, stride=7, padding=0)
        self.fc = nn.Linear(2048, n_class)
    
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.pool(x)
        x = torch.flatten(x, start_dim=1)
        x = self.fc(x)
        return x

model = ResNet50().to(device)
# 查看网络结构
import torchsummary
torchsummary.summary(model, (3, 224, 224))
print(model)

三、训练模型

1.优化器设置

# 优化器设置
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)#要训练什么参数/
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.92)#学习率每5个epoch衰减成原来的1/10
loss_fn = nn.CrossEntropyLoss()

2.编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,
    num_batches = len(dataloader)   # 批次数目,

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3.编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,8(255/32=8,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4、正式训练

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
best_acc = 0

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    scheduler.step()#学习率衰减
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最优模型
    if epoch_test_acc > best_acc:
        best_acc = epoch_train_acc
        state = {
            'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重
            'best_acc': best_acc,
            'optimizer' : optimizer.state_dict(),
        }
        
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
print('best_acc:',best_acc)
Epoch:19, Train_acc:88.9%, Train_loss:0.264, Test_acc:87.6%,Test_loss:0.347
Epoch:20, Train_acc:86.1%, Train_loss:0.481, Test_acc:87.6%,Test_loss:0.319
Done
best_acc: 0.911504424778761

四、结果可视化

1.Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2.指定图片进行预测

from PIL import Image

classes = list(total_data.class_to_idx)

def predict_one_img(image_path,model,transform,classes):
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)
    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    model.eval()
    output = model(img)
    
    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
predict_one_img('./J1/bird_photos/Bananaquit/047.jpg', model, train_transforms, classNames)
预测结果是:Bananaquit

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/10453.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OceanBase 4.1 发版 | 一个面向开发者的里程碑版本

欢迎访问 OceanBase 官网获取更多信息&#xff1a;https://www.oceanbase.com/ 2022 年 8 月&#xff0c;OceanBase发布了 4.0 版本&#xff08;小鱼&#xff09;&#xff0c;作为业内首个单机分布式一体化架构&#xff0c;兼顾了分布式架构的扩展性和集中式架构的性能优势&…

优思学院|职场达人有什么晋升秘诀?

作为职场人士&#xff0c;升职晋升是我们一直追求的目标。然而&#xff0c;在职场中&#xff0c;竞争是激烈的&#xff0c;只有那些真正做到了突出表现和积极进取的人才能获得晋升机会。这里将分享七个职场达人的晋升秘诀&#xff0c;希望对那些正在寻找升职机会的人有所帮助。…

Linux Shell 实现一键部署Nginx

nginx前言 nginx [engine x] 是 HTTP 和反向代理服务器、邮件代理服务器和通用 TCP/UDP 代理服务器&#xff0c;最初由Igor Sysoev编写。很长一段时间以来&#xff0c;它一直在许多负载重的俄罗斯网站上运行&#xff0c;包括 Yandex、 Mail.Ru、 VK和 Rambler。根据 Netcraft …

Spring的创建与Bean对象的存取

文章目录&#xff1a;一.Spring项目的创建1.先创建maven项目 2.添加国内源 3.添加spring依赖 4.创建spring配置文件 5.创建启动类 二.Bean对象的创建和读取1.Bean对象的创建与存储方式&#xff08;1&#xff09;类注解 &#xff08;2&#xff09;方法注解 &#xff08;3&#x…

【从零开始学Skynet】基础篇(五):简易聊天室

在游戏中各玩家之间都可以进行聊天之类的交互&#xff0c;在这一篇中&#xff0c;我们就来实现一个简易的聊天室功能&#xff0c;这在上一篇代码的基础上很容易就能实现。1、功能需求 客户端发送一条消息&#xff0c;经由服务端转发&#xff0c;所有在线客户端都能收到&#xf…

redis网络模型

用户空间和内核空间IO五种IO模型阻塞IO非阻塞IOIO多路复用selectpollepollweb服务流程信号驱动IO异步IOIO模型比较redis网络模型redis为什么是单线程redis单线程网络模型流程用户空间和内核空间 为安全&#xff0c;将用户应用和系统应用分隔开&#xff0c;产生用户空间和内核空…

OpenTex 企业内容管理平台

OpenText 企业内容管理平台 将内容服务与领先应用程序集成&#xff0c;弥合内容孤岛、加快信息流并扩大治理 什么是内容服务集成&#xff1f; 内容服务集成通过将内容管理平台与处于流程核心的独立应用程序和系统连接起来&#xff0c;支持并扩展了 ECM 的传统优势。 最好的内…

Flutter Web 开发实践与优化

一,Flutter Web架构 目前,除了可以支持Android、iOS移动跨平台开发之外,Flutter还支持macOS、Windows、Linux和Web等多个跨平台的开发。可以说,作为一款先进的跨平台开发框架,Flutter已经真正意义上实现了“一次编写,处处运行”的美好愿景。 众所周知,Dart 语言存在之…

事件触发模式 LT ET ?EPOLLIN EPOLLOUT 各种情况总结。【面试复盘】【学习笔记】

麻了&#xff0c;对 epoll 的触发机制理解不深刻…面试又被拷打了… 下面总结一下各种情况&#xff0c;并不涉及底层原理&#xff0c;底层原理看这里。 文章结构可以看左下角目录、 有什么理解的不对的&#xff0c;请大佬们指点。 先说结论&#xff0c;下面再验证&#xff…

package-cli-service,为构建发布npm包提供完整的工作流

package-cli-service 介绍 package-cli-service 是一个开发环境依赖。它是一个 npm 包&#xff0c;局部安装在每个 create-package-tools 创建的项目中。 package-cli-service 是构建于 rollup 和 webpack 之上的。它包含了&#xff1a; 一个针对绝大部分 package 优化过的内…

013 - C++引用

本期我们要讲的是 C 中的引用。 上期我们讨论了指针&#xff0c;如果你没有看过那期内容&#xff0c;你一定要回去看看&#xff0c;因为引用实际上只是指针的扩展&#xff0c;你至少需要在基本层面上理解指针是如何工作的&#xff0c;然后才能继续学习本期的内容&#xff0c;本…

MySQL索引数据结构入门

之前松哥写过一个 MySQL 系列&#xff0c;但是当时是基于 MySQL5.7 的&#xff0c;最近有空在看 MySQL8 的文档&#xff0c;发现和 MySQL5.7 相比还是有不少变化&#xff0c;同时 MySQL 又是小伙伴们在面试时一个非常重要的知识点&#xff0c;因此松哥打算最近再抽空和小伙伴们…

Golang数据类型比较

直接使用比较的情况 分类说明是否能比较说明基本类型整型&#xff08; int/uint/int8/uint8/int16/uint16/int32/uint32/int64/uint64/byte/rune等&#xff09;浮点数&#xff08; float32/float64&#xff09;复数类型&#xff08; complex64/complex128&#xff09;字符串&a…

Linux查看端口

目录 1.查看已知端口的使用情况 2.查看所有端口的占用情况 3.查看占用端口的程序的进程号 4.杀死进程号 1.查看已知端口的使用情况 #例:8080 可使用命令: netstat -anp | grep 8080 结果如下: 还可以使用这条命令: netstat -tln | grep 8080 结果如下: 区别:第一条命令后面显示…

NumPy 秘籍中文第二版:十二、使用 NumPy 进行探索性和预测性数据分析

原文&#xff1a;NumPy Cookbook - Second Edition 协议&#xff1a;CC BY-NC-SA 4.0 译者&#xff1a;飞龙 在本章中&#xff0c;我们涵盖以下秘籍&#xff1a; 探索气压探索日常气压范围研究年度气压平均值分析最大可见度用自回归模型预测气压使用移动平均模型预测气压研究年…

爱智EdgerOS之深入解析离线下载任务

一、需求分析 在日常使用计算机的过程中&#xff0c;看到喜欢的资源不可避免地想把它下载到我们的设备上保存下来&#xff0c;比如图片&#xff0c;音视频资源&#xff0c;文档资源等&#xff0c;基于这种应用场景&#xff0c;现在来看看在爱智设备上可以如何实现呢&#xff1…

76-TCP协议,UDP协议以及区别

TCP协议,UDP协议,SCTP协议一.TCP协议1.什么是TCP协议2.TCP协议的特点3.TCP头部结构4.TCP状态转移5.TCP超时重传二.UDP协议1.什么是UDP协议2.UDP协议的特点三.TCP和UDP的区别一.TCP协议 1.什么是TCP协议 TCP(Transmission Control Protocol)协议即为传输控制协议,是一种面向连…

2023-04-12 面试中常见的数组题目

数组中的问题其实最常见 通过基础问题&#xff0c;掌握写出正确算法的“秘诀”巧妙使用双索引技术&#xff0c;解决复杂问题对撞指针- 滑动窗口 1 从二分查找法看如何写出正确的程序 本节学习重点&#xff1a;处理边界问题&#xff01; 1.确定边界范围方法&#xff0c;先用区…

微服务架构-服务网关(Gateway)-权限认证(分布式session替代方案)

权限认证-分布式session替代方案 前面我们了解了Gateway组件的过滤器&#xff0c;这一节我们就探讨一下Gateway在分布式环境中的一个具体用例-用户鉴权。 1、传统单应用的用户鉴权 从我们开始学JavaEE的时候&#xff0c;就被洗脑式灌输了一种权限验证的标准做法&#xff0c;…

Elasticsearch:集群管理的一些建议

在之前的文章 “Elasticsearch&#xff1a;集群管理” &#xff0c;我们对集群管理做了一些介绍。在今天的文章中&#xff0c;我们接着来聊一下有关配置的方面的问题。这在很大程度上取决于你的用例&#xff0c;是索引还是搜索繁重。 我们将在这里讨论在集群设置方面我们需要关…