Python解决整数规划问题
在实际生活中,线性规划中的变量不可能都是连续的值,比如不可能计算出0.5个人,0.5只牛羊,往往需要根据题目需要或者实际问题来调整决策变量的变量类型
Continuous’ 表示连续变量(默认值)、’ Integer ’ 表示离散变量(用于整数规划问题)
源代码:
import pulp # 导入 pulp 库
# 主程序
def main():
# 模型参数设置
"""
问题描述:
某厂生产甲乙两种饮料,每百箱甲饮料需用原料6千克、工人10名,获利10万元;每百箱乙饮料需用原料5千克、工人20名,获利9万元。
今工厂共有原料60千克、工人150名,又由于其他条件所限甲饮料产量不超过8百箱。
(1)问如何安排生产计划,即两种饮料各生产多少使获利最大?
(2)若投资0.8万元可增加原料1千克,是否应作这项投资?投资多少合理?
(3)若不允许散箱(按整百箱生产),如何安排生产计划,即两种饮料各生产多少使获利最大?
(4)若不允许散箱(按整百箱生产),若投资0.8万元可增加原料1千克,是否应作这项投资?投资多少合理?
"""
# 问题 1:
"""
问题建模:
决策变量:
x1:甲饮料产量(单位:百箱)
x2:乙饮料产量(单位:百箱)
目标函数:
max fx = 10*x1 + 9*x2
约束条件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
x1, x2 >= 0,x1 <= 8
此外,由 x1,x2>=0 和 10*x1+20*x2<=150 可知 0<=x2<=7.5
"""
ProbLP1 = pulp.LpProblem("ProbLP1", sense=pulp.LpMaximize) # 定义问题 1,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定义 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定义 x2
ProbLP1 += (10*x1 + 9*x2) # 设置目标函数 f(x)
ProbLP1 += (6*x1 + 5*x2 <= 60) # 不等式约束
ProbLP1 += (10*x1 + 20*x2 <= 150) # 不等式约束
ProbLP1.solve()
print(ProbLP1.name) # 输出求解状态
print("Status :", pulp.LpStatus[ProbLP1.status]) # 输出求解状态
for v in ProbLP1.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F1(x) =", pulp.value(ProbLP1.objective)) # 输出最优解的目标函数值
# 问题 2:
"""
问题建模:
决策变量:
x1:甲饮料产量(单位:百箱)
x2:乙饮料产量(单位:百箱)
x3:增加投资(单位:万元)
目标函数:
max fx = 10*x1 + 9*x2 - x3
约束条件:
6*x1 + 5*x2 <= 60 + x3/0.8
10*x1 + 20*x2 <= 150
x1, x2, x3 >= 0,x1 <= 8
此外,由 x1,x2>=0 和 10*x1+20*x2<=150 可知 0<=x2<=7.5
"""
ProbLP2 = pulp.LpProblem("ProbLP2", sense=pulp.LpMaximize) # 定义问题 2,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定义 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定义 x2
x3 = pulp.LpVariable('x3', lowBound=0, cat='Continuous') # 定义 x3
ProbLP2 += (10*x1 + 9*x2 - x3) # 设置目标函数 f(x)
ProbLP2 += (6*x1 + 5*x2 - 1.25*x3 <= 60) # 不等式约束
ProbLP2 += (10*x1 + 20*x2 <= 150) # 不等式约束
ProbLP2.solve()
print(ProbLP2.name) # 输出求解状态
print("Status :", pulp.LpStatus[ProbLP2.status]) # 输出求解状态
for v in ProbLP2.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F2(x) =", pulp.value(ProbLP2.objective)) # 输出最优解的目标函数值
# 问题 3:整数规划问题
"""
问题建模:
决策变量:
x1:甲饮料产量,正整数(单位:百箱)
x2:乙饮料产量,正整数(单位:百箱)
目标函数:
max fx = 10*x1 + 9*x2
约束条件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
x1, x2 >= 0,x1 <= 8,x1, x2 为整数
此外,由 x1,x2>=0 和 10*x1+20*x2<=150 可知 0<=x2<=7.5
"""
ProbLP3 = pulp.LpProblem("ProbLP3", sense=pulp.LpMaximize) # 定义问题 3,求最大值
print(ProbLP3.name) # 输出求解状态
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Integer') # 定义 x1,变量类型:整数
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Integer') # 定义 x2,变量类型:整数
ProbLP3 += (10 * x1 + 9 * x2) # 设置目标函数 f(x)
ProbLP3 += (6 * x1 + 5 * x2 <= 60) # 不等式约束
ProbLP3 += (10 * x1 + 20 * x2 <= 150) # 不等式约束
ProbLP3.solve()
print("Status:", pulp.LpStatus[ProbLP3.status]) # 输出求解状态
for v in ProbLP3.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F3(x) =", pulp.value(ProbLP3.objective)) # 输出最优解的目标函数值
# 问题 4:
"""
问题建模:
决策变量:
x1:甲饮料产量,正整数(单位:百箱)
x2:乙饮料产量,正整数(单位:百箱)
x3:增加投资(单位:万元)
目标函数:
max fx = 10*x1 + 9*x2 - x3
约束条件:
6*x1 + 5*x2 <= 60 + x3/0.8
10*x1 + 20*x2 <= 150
x1, x2, x3 >= 0,x1 <= 8,x1, x2 为整数
此外,由 x1,x2>=0 和 10*x1+20*x2<=150 可知 0<=x2<=7.5
"""
ProbLP4 = pulp.LpProblem("ProbLP4", sense=pulp.LpMaximize) # 定义问题 4,求最大值
print(ProbLP4.name) # 输出求解状态
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Integer') # 定义 x1,变量类型:整数
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7, cat='Integer') # 定义 x2,变量类型:整数
x3 = pulp.LpVariable('x3', lowBound=0, cat='Continuous') # 定义 x3
ProbLP4 += (10*x1 + 9*x2 - x3) # 设置目标函数 f(x)
ProbLP4 += (6*x1 + 5*x2 - 1.25*x3 <= 60) # 不等式约束
ProbLP4 += (10*x1 + 20*x2 <= 150) # 不等式约束
ProbLP4.solve()
print("Status:", pulp.LpStatus[ProbLP4.status]) # 输出求解状态
for v in ProbLP4.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F4(x) =", pulp.value(ProbLP4.objective)) # 输出最优解的目标函数值
return
if __name__ == '__main__':
main()
运行结果
问题一:
问题二:
问题三:
问题四: