LeetCode 23 合并 K 个升序链表

LeetCode 23 合并 K 个升序链表

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/merge-k-sorted-lists/description/

博主Github:https://github.com/GDUT-Rp/LeetCode

题目:

给你一个链表数组,每个链表都已经按升序排列。

请你将所有链表合并到一个升序链表中,返回合并后的链表。

示例1:

输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[
  1->4->5,
  1->3->4,
  2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6

示例2:

输入:lists = []
输出:[]

示例3:

输入:lists = [[]]
输出:[]

提示:

  • k == lists.length
  • 0 <= k <= 1 0 4 10^4 104
  • 0 <= lists[i].length <= 500
  • − 1 0 4 -10^4 104 <= lists[i][j] <= 1 0 4 10^4 104
  • lists[i] 按 升序 排列
  • lists[i].length 的总和不超过 10^4

解题思路:

方法一:顺序合并

用一个变量 ans 来维护以及合并的链表,第 i 次循环把第 i 个链表和 ans 合并,答案保存到 ans 中。

Golang

/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */
func mergeKLists(lists []*ListNode) *ListNode {
    var ans *ListNode
    for i:=0; i<len(lists); i++ {
        ans = mergeTwoLists(ans, lists[i])
    }
    return ans
}

func mergeTwoLists(a *ListNode, b *ListNode) *ListNode {
    if a == nil {
        return b
    }
    if b == nil {
        return a
    }

    var head ListNode
    tail := &head

    for (a != nil && b != nil) {
        if a.Val < b.Val {
            tail.Next = a
            a = a.Next
        } else {
            tail.Next = b
            b = b.Next
        }
        tail = tail.Next
    }

    if a != nil {
        tail.Next = a
    } else {
        tail.Next = b
    }
    return head.Next
}

C++

class Solution {
public:
    ListNode* mergeTwoLists(ListNode *a, ListNode *b) {
        if ((!a) || (!b)) return a ? a : b;
        ListNode head, *tail = &head, *aPtr = a, *bPtr = b;
        while (aPtr && bPtr) {
            if (aPtr->val < bPtr->val) {
                tail->next = aPtr; aPtr = aPtr->next;
            } else {
                tail->next = bPtr; bPtr = bPtr->next;
            }
            tail = tail->next;
        }
        tail->next = (aPtr ? aPtr : bPtr);
        return head.next;
    }

    ListNode* mergeKLists(vector<ListNode*>& lists) {
        ListNode *ans = nullptr;
        for (size_t i = 0; i < lists.size(); ++i) {
            ans = mergeTwoLists(ans, lists[i]);
        }
        return ans;
    }
};

Java

class Solution {
    public ListNode mergeKLists(ListNode[] lists) {
        ListNode ans = null;
        for (int i = 0; i < lists.length; ++i) {
            ans = mergeTwoLists(ans, lists[i]);
        }
        return ans;
    }

    public ListNode mergeTwoLists(ListNode a, ListNode b) {
        if (a == null || b == null) {
            return a != null ? a : b;
        }
        ListNode head = new ListNode(0);
        ListNode tail = head, aPtr = a, bPtr = b;
        while (aPtr != null && bPtr != null) {
            if (aPtr.val < bPtr.val) {
                tail.next = aPtr;
                aPtr = aPtr.next;
            } else {
                tail.next = bPtr;
                bPtr = bPtr.next;
            }
            tail = tail.next;
        }
        tail.next = (aPtr != null ? aPtr : bPtr);
        return head.next;
    }
}

复杂度分析

时间复杂度: 假设每个链表的最长长度是 n。在第一次合并后,ans 的长度为 n;第二次合并后,ans 的长度为 2n,第 i 次合并后,ans 的长度为 i×n。第 i 次合并的时间代价是 O(n+(i−1)×n)=O(i×n),那么总的时间代价为 O ( ∑ i = 1 k ( i × n ) ) = O ( ( 1 + k ) ⋅ k 2 × n ) = O ( k 2 n ) O(\sum_{i = 1}^{k} (i \times n)) = O(\frac{(1 + k)\cdot k}{2} \times n) = O(k^2 n) O(i=1k(i×n))=O(2(1+k)k×n)=O(k2n),故渐进时间复杂度为 O ( k 2 n ) O(k^2 n) O(k2n)

空间复杂度 O(1) 。

方法二:分治合并

考虑优化方法一,用分治的方法进行合并。

  • 将 kkk 个链表配对并将同一对中的链表合并;
  • 第一轮合并以后, k 个链表被合并成了 k 2 \frac{k}{2} 2k​ 个链表,平均长度为 2 n k \frac{2n}{k} k2n,然后是 k 4 \frac{k}{4} 4k 个链表, k 8 \frac{k}{8} 8k 个链表等等;
  • 重复这一过程,直到我们得到了最终的有序链表。

在这里插入图片描述

Golang

/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */
func mergeKLists(lists []*ListNode) *ListNode {
    return merge(lists, 0, len(lists) - 1)
}

func merge(lists []*ListNode, left, right int) *ListNode {
    if left == right {
        return lists[left]
    }
    if left > right {
        return nil
    }
    mid := (left + right) >> 1
    return mergeTwoLists(merge(lists, left, mid), merge(lists, mid+1, right))
}

func mergeTwoLists(a *ListNode, b *ListNode) *ListNode {
    if a == nil {
        return b
    }
    if b == nil {
        return a
    }

    var head ListNode
    tail := &head

    for (a != nil && b != nil) {
        if a.Val < b.Val {
            tail.Next = a
            a = a.Next
        } else {
            tail.Next = b
            b = b.Next
        }
        tail = tail.Next
    }

    if a != nil {
        tail.Next = a
    } else {
        tail.Next = b
    }
    return head.Next
}

C++

class Solution {
public:
    ListNode* mergeTwoLists(ListNode *a, ListNode *b) {
        if ((!a) || (!b)) return a ? a : b;
        ListNode head, *tail = &head, *aPtr = a, *bPtr = b;
        while (aPtr && bPtr) {
            if (aPtr->val < bPtr->val) {
                tail->next = aPtr; aPtr = aPtr->next;
            } else {
                tail->next = bPtr; bPtr = bPtr->next;
            }
            tail = tail->next;
        }
        tail->next = (aPtr ? aPtr : bPtr);
        return head.next;
    }

    ListNode* merge(vector <ListNode*> &lists, int l, int r) {
        if (l == r) return lists[l];
        if (l > r) return nullptr;
        int mid = (l + r) >> 1;
        return mergeTwoLists(merge(lists, l, mid), merge(lists, mid + 1, r));
    }

    ListNode* mergeKLists(vector<ListNode*>& lists) {
        return merge(lists, 0, lists.size() - 1);
    }
};

Java

class Solution {
    public ListNode mergeKLists(ListNode[] lists) {
        return merge(lists, 0, lists.length - 1);
    }

    public ListNode merge(ListNode[] lists, int l, int r) {
        if (l == r) {
            return lists[l];
        }
        if (l > r) {
            return null;
        }
        int mid = (l + r) >> 1;
        return mergeTwoLists(merge(lists, l, mid), merge(lists, mid + 1, r));
    }

    public ListNode mergeTwoLists(ListNode a, ListNode b) {
        if (a == null || b == null) {
            return a != null ? a : b;
        }
        ListNode head = new ListNode(0);
        ListNode tail = head, aPtr = a, bPtr = b;
        while (aPtr != null && bPtr != null) {
            if (aPtr.val < bPtr.val) {
                tail.next = aPtr;
                aPtr = aPtr.next;
            } else {
                tail.next = bPtr;
                bPtr = bPtr.next;
            }
            tail = tail.next;
        }
        tail.next = (aPtr != null ? aPtr : bPtr);
        return head.next;
    }
}

时间复杂度:考虑递归「向上回升」的过程——第一轮合并 k 2 \frac{k}{2} 2k 组链表,每一组的时间代价是 O ( 2 n ) O(2n) O(2n);第二轮合并 k 4 \frac{k}{4} 4k​ 组链表,每一组的时间代价是 O ( 4 n ) O(4n) O(4n)…所以总的时间代价是 O ( ∑ i = 1 ∞ k 2 i × 2 i n ) = O ( k n × log ⁡ k ) O(\sum_{i = 1}^{\infty} \frac{k}{2^i} \times 2^i n) = O(kn \times \log k) O(i=12ik×2in)=O(kn×logk),故渐进时间复杂度为 O ( k n × log ⁡ k ) O(kn \times \log k) O(kn×logk)
空间复杂度:递归会使用到 O ( log ⁡ k ) O(\log k) O(logk) 空间代价的栈空间。

方法三:使用优先队列/最小堆合并

这个方法和前两种方法的思路有所不同

我们需要维护当前每个链表没有被合并的元素的最前面一个, k k k 个链表就最多有 k k k 个满足这样条件的元素,每次在这些元素里面选取 val 属性最小的元素合并到答案中。

在选取最小元素的时候,我们可以用优先队列/最小堆来优化这个过程。

Golang

/**
 * Definition for singly-linked list.
 * type ListNode struct {
 *     Val int
 *     Next *ListNode
 * }
 */

import "container/heap"

type Status struct {
    Val  int
    Ptr  *ListNode
}

type PriorityQueue []*Status

func (pq PriorityQueue) Len() int {
    return len(pq)
}

func (pq PriorityQueue) Less(i, j int) bool {
    return pq[i].Val < pq[j].Val
}

func (pq PriorityQueue) Swap(i, j int) {
    pq[i], pq[j] = pq[j], pq[i]
}

func (pq *PriorityQueue) Push(x interface{}) {
    *pq = append(*pq, x.(*Status))
}

func (pq *PriorityQueue) Pop() interface{} {
    old := *pq
    n := len(old)
    item := old[n-1]
    old[n-1] = nil
    *pq = old[0 : n-1]
    return item
}

func mergeKLists(lists []*ListNode) *ListNode {
    var q PriorityQueue
    heap.Init(&q)

    for _, node := range lists {
        // 每个链表第一个都放进这个堆
        if node != nil {
            heap.Push(&q, &Status{Val: node.Val, Ptr: node})
        }
    }

    var head ListNode
    tail := &head

    for q.Len() > 0 {
        // 取出最小的
        f := heap.Pop(&q).(*Status)
        tail.Next = f.Ptr
        tail = tail.Next
        // 只要所取的节点后面还要数据
        if f.Ptr.Next != nil {
            // 就放进堆里来
            heap.Push(&q, &Status{Val: f.Ptr.Next.Val, Ptr: f.Ptr.Next})
        }
    }

    return head.Next
}

Java

class Solution {
    class Status implements Comparable<Status> {
        int val;
        ListNode ptr;

        Status(int val, ListNode ptr) {
            this.val = val;
            this.ptr = ptr;
        }

        public int compareTo(Status status2) {
            return this.val - status2.val;
        }
    }

    PriorityQueue<Status> queue = new PriorityQueue<Status>();

    public ListNode mergeKLists(ListNode[] lists) {
        for (ListNode node: lists) {
            if (node != null) {
                queue.offer(new Status(node.val, node));
            }
        }
        ListNode head = new ListNode(0);
        ListNode tail = head;
        while (!queue.isEmpty()) {
            Status f = queue.poll();
            tail.next = f.ptr;
            tail = tail.next;
            if (f.ptr.next != null) {
                queue.offer(new Status(f.ptr.next.val, f.ptr.next));
            }
        }
        return head.next;
    }
}

C++

class Solution {
public:
    struct Status {
        int val;
        ListNode *ptr;
        bool operator < (const Status &rhs) const {
            return val > rhs.val;
        }
    };

    priority_queue <Status> q;

    ListNode* mergeKLists(vector<ListNode*>& lists) {
        for (auto node: lists) {
            if (node) q.push({node->val, node});
        }
        ListNode head, *tail = &head;
        while (!q.empty()) {
            auto f = q.top(); q.pop();
            tail->next = f.ptr; 
            tail = tail->next;
            if (f.ptr->next) q.push({f.ptr->next->val, f.ptr->next});
        }
        return head.next;
    }
};

复杂度分析

时间复杂度:考虑优先队列中的元素不超过 k k k 个,那么插入和删除的时间代价为 ¥O(\log k)$,这里最多有 k n kn kn 个点,对于每个点都被插入删除各一次,故总的时间代价即渐进时间复杂度为 O ( k n × log ⁡ k ) O(kn \times \log k) O(kn×logk)
空间复杂度:这里用了优先队列,优先队列中的元素不超过 k k k 个,故渐进空间复杂度为 O ( k ) O(k) O(k)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/101227.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

A 股个股资金流 API 数据接口

A 股个股资金流 API 数据接口 全量股票资金流数据&#xff0c;全量A股数据&#xff0c;最长30日历史数据 1. 产品功能 支持所有A股资金流数据查询&#xff1b;每日定时更新数据&#xff1b;支持多达 30 日历史数据查询&#xff1b;超高的查询效率&#xff0c;数据秒级返回&am…

【LeetCode75】第四十一题 二叉搜索树中的搜索

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们一个搜索二叉树&#xff0c;让我们找出节点值等于目标的节点并返回出去。 首先我们可以直接遍历整棵二叉树&#xff0c;找到值…

基于大语言模型知识问答应用落地实践 – 知识库构建(下)

上篇介绍了构建知识库的大体流程和一些优化经验细节&#xff0c;但并没有结合一个具体的场景给出更细节的实战经验以及相关的一些 benchmark 等&#xff0c;所以本文将会切入到一个具体场景进行讨论。 目标场景&#xff1a;对于 PubMed 医疗学术数据中的 1w 篇文章进行知识库构…

PO设计模式是selenium自动化测试中最佳的设计模式之一

Page Object Model&#xff1a;PO设计模式是selenium自动化测试中最佳的设计模式之一&#xff0c;主要体现在对界面交互细节的封装&#xff0c;也就是在实际测试中只关注业务流程就OK了传统的设计中&#xff0c;在新增测试用例之后&#xff0c;代码会有以下几个问题&#xff1a…

python爬虫实战(5)--获取小破站热榜

1. 分析地址 打开小破站热榜首页&#xff0c;查看响应找到如下接口地址 2. 编码 定义请求头 拿到标头 复制粘贴&#xff0c;处理成json 处理请求头代码如下: def format_headers_to_json():f open("data.txt", "r", encoding"utf-8") # 读…

Qt无边框青绿色主题

收费产品&#xff0c;学生党、闹眼子党勿扰 收费金额&#xff1a;500元 1 概述 最近因项目需要&#xff0c;写了一个炫酷的青绿色、无边框界面&#xff0c;和3DSMax的界面有点类似。 2 截图 首先看看3DSMax的界面 不知道大家看出来没&#xff0c;这个ui其实很简单&#xff…

python的观察者模式案例

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言二、具体代码写在结尾 前言 最近写安卓的代码比较多&#xff0c;了解了java代码的注册回调机制&#xff0c;也就是观察者模式&#xff0c;搜索了一下python也有…

无涯教程-Android - Absolute Layout函数

Absolute Layout 可让您指定其子级的确切位置(x/y坐标)&#xff0c;绝对布局的灵活性较差且难以维护。 Absolute Layout - 属性 以下是AbsoluteLayout特有的重要属性- Sr.NoAttribute & 描述1 android:id 这是唯一标识布局的ID。 2 android:layout_x 这指定视图的x坐标…

Nmap 7.94 发布:新功能!

Nmap 的最新版本 7.94 在其 26 岁生日之际发布。 最重要的升级是在所有平台上将 Zenmap 和 Ndiff 从 Python 2 迁移到 Python 3。 这个新版本的 Nmap 7.94 进行了升级&#xff0c;进行了多项改进&#xff0c;修复了一些关键错误&#xff0c;并添加了新的 Npcap、操作系统指纹…

[贪心] 拼接最小数

这道题思路并不难&#xff0c;我主要想学习其一些对于字符串的处理。 代码如下&#xff1a; #include <iostream> #include <string> #include <algorithm> using namespace std;const int MAXN 10000; string nums[MAXN];bool cmp(string a, string b) {…

maven的依赖下载不下来的几种解决方法

前言 每次部署测试环境&#xff0c;从代码库拉取代码&#xff0c;都会出现缺少包的情况。然后找开发一通调试&#xff0c;到处拷包。 方案一&#xff1a;pom文件注释/取消注释 注释掉pom.xml里的报红色的依赖&#xff08;同时可以把本地maven库repo里对应的包删除&#xff09;&…

【前端】Vue2 脚手架模块化开发 -快速入门

&#x1f384;欢迎来到边境矢梦的csdn博文&#x1f384; &#x1f384;本文主要梳理Vue2 脚手架模块化开发 &#x1f384; &#x1f308;我是边境矢梦&#xff0c;一个正在为秋招和算法竞赛做准备的学生&#x1f308; &#x1f386;喜欢的朋友可以关注一下&#x1faf0;&#x…

linux安装docker全过程

3. 第二步&#xff1a;设置docker的存储库。就两条命令&#xff0c;我们直接执行就好。 ​ sudo yum install -y yum-utils sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo ​​ 4. 安装docker engine和docker-compose。 执行命…

Postgresql JSON对象和数组查询

文章目录 一. Postgresql 9.5以下版本1.1 简单查询(缺陷&#xff1a;数组必须指定下标&#xff0c;不推荐)1.1.1 模糊查询1.1.2 等值匹配1.1.3 时间搜索1.1.4 在列表1.1.5 包含 1.2 多层级JSONArray&#xff08;推荐&#xff09;1.2.1 模糊查询1.2.2 模糊查询 NOT1.2.3 等值匹配…

设计模式-建造者(生成器)模式

文章目录 简介建造者模式的核心概念产品&#xff08;Product&#xff09;建造者&#xff08;Builder&#xff09;指挥者&#xff08;Director&#xff09;建造者模式与其他设计模式的关系工厂模式和建造者模式uml对比 建造者模式的实现步骤建造者模式的应用场景spring中应用 建…

什么是Flex容器和Flex项目(Flex Container and Flex Item)?它们之间有什么关系?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ Flex容器和Flex项目⭐ Flex容器⭐ Flex项目⭐ 关系⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为…

【Mycat 2】详解分库分表设计方案及实操测试(二)

文章目录 4. 分表、不分实例、不分库4.1 数据分片映射关系4.2 测试过程5. 分实例、分表、不分库5.1 分库键和分表键相同5.1.1 数据分片映射关系5.1.2 测试过程5.2 分库键和分表键不相同5.2.1 数据分片映射关系5.2.2 测试过程6. 不分片6.1 普通表6.1.1 数据映射关系6.1.2 测试过…

【用unity实现100个游戏之7】从零开始制作一个仿杀戮尖塔卡牌回合制游戏

文章目录 前言素材资源开始一、UI框架二、挂载脚本三、事件监听&#xff0c;用于绑定按钮事件四、声音管理器五、excel转txt文本六、游戏配置七、用户信息表八、战斗管理器九、 敌人管理器十、玩家血量、能量、防御值、卡牌数十一、敌人血量 行动显示逻辑十二、UI提示效果实现十…

element-ui分析

目录解析 element ├── github // 存放了elementui贡献指南&#xff0c;issue 和 PR模板 ├── build // 存放打包相关的配置文件 ├── examples // 组件相关示例demo ├── packages // 组件源码 ├── src // 存放入口文件和一些工具辅助函数 ├── test // 单元测试…

【Go 基础篇】Go语言结构体详解:打开自定义类型的大门

嗨&#xff0c;Go语言学习者们&#xff01;在编程的世界里&#xff0c;数据是核心&#xff0c;而结构体&#xff08;Struct&#xff09;是一种能够帮助我们更有组织地存储和操作数据的重要工具。在本篇博客中&#xff0c;我们将深入探讨Go语言中结构体的概念、定义、初始化、嵌…