DBO优化SVM的电力负荷预测,附MATLAB代码

今天为大家带来一期基于DBO-SVM的电力负荷预测。

原理详解

文章对支持向量机(SVM)的两个参数进行优化,分别是:惩罚系数c和 gamma。

其中,惩罚系数c表示对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。c越小,容易欠拟合。c过大或过小,泛化能力都会变差。

gamma是选择RBF函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布,gamma越大,支持向量越少,gamma值越小,支持向量越多。支持向量的个数影响训练与预测的速度。

本文所选SVM是从官网下载的libsvm-3.3版本,作者已编译好,大家可以直接运行。如果想自行编译的童鞋可以从网站下载:https://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html,编译步骤可以参考https://blog.csdn.net/qq_42457960/article/details/109275227

采用蜣螂优化SVM,参数设置范围分别是:

惩罚系数c[0.001, 1000]
gamma[2^-8,2^8]

将DBO种群数设置为:30,迭代次数设置为60。


数据准备

对电力负荷数据进行处理

本次数据包含负荷值,温度,湿度,风速,压强,降水量,能见度,水汽压和体感温度,部分数据截图如下:

5affd61c38e621decacd7fcea627a74b.png

选取1200个样本作为训练集,每个样本组成为:当天24个小时的全部数据,因此训练集的输入数据大小为1200*216,其中216=24*9,24代表24个小时,9代表9个特征。训练集的输出数据大小为:1200*1。1代表未来一小时的负荷值。

选取100个样本作为测试集,同理,测试集的输入数据大小为100*216,训练集的输出数据大小为:100*1。

结果展示

采用SVM对电力负荷数据进行训练和预测

SVM的预测结果如下:

26f6f468638d19bb5239e0bec261aa1a.png

可以看到,未优化的SVM预测效果还是不错的,但是仍然有改进空间。

DBO-SVM模型的预测效果如下:

5f6c35fdba021a081e87fa2b2a42887d.png

误差对比图如下:

21211ac8f2f5f88ea6888641fee155e0.png

DBO-SVM的进化曲线:

094a53e040c9799867e6d329e84d3f55.png

可以看到DBO-SVM预测效果有了明显提升,DBO-SVM的MSE误差为0.79022,相比于未优化SVM的17.2023有了很大提升!

DBO-SVM的回归拟合图:

9c3ae215e432dfd11851f115cd7467b1.png

误差直方图:

b00571746436990a42e6705d3b7985a7.png

4cf0c992edb5e92a79e8f7d3cd2ee489.png

750a1d28232a8c15f4ca057d253c1368.png

部分代码

%% 初始化DBO参数
pop=30;   %初始种群规模
maxgen=60;   %最大进化代数
lb = [10^-3, 2^-8];
ub = [10^3, 2^8];
dim = 2;
[fMin,bestX,Convergence_curve ] = DBOforSVM(pop, maxgen,lb,ub,dim,inputn,output_train,inputn_test,output_test);
bestc=bestX(1);
bestg=bestX(2);
disp(['最佳参数为:',num2str(bestX)])
cmd = [' -t 2',' -c ',num2str(bestc),' -g ',num2str(bestg),' -s 3 -h 0 -q'];
mode1= libsvmtrain(output_train,inputn,cmd);
[test_simu1,~,~]= libsvmpredict(output_test,inputn_test,mode1);
mse1=mse(output_test,test_simu1); 
error1 = output_test - test_simu1;


%% 绘制进化曲线
figure
plot(Convergence_curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('DBO-SVM的MSE进化曲线')
% 绘制误差对比图
figure
plot(abs(error1),'-*')
hold on
plot(abs(error0),'-or')
title(['SVM的MSE:',num2str(mse0),newline,'DBO-SVM的MSE:',num2str(mse1)])
xlabel('预测样本','fontsize',12)
ylabel('误差绝对值','fontsize',12)
legend('DBO-SVM预测器预测','SVM预测器预测')
% 绘制结果对比曲线图
figure
plot(output_test,'b-.')
hold on
plot(test_simu0,'r')
hold on
plot(test_simu1,'g')
hold off
grid on
title(['结果对比曲线图'])
legend('真实值','SVM预测值','DBO-SVM预测值')
xlabel('样本编号')
ylabel('负荷值')


%% 回归图与误差直方图
figure;
plotregression(test_simu1,output_test,['优化后回归图']);
set(gcf,'color','w')


figure;
ploterrhist(test_simu1-output_test,['误差直方图']);
set(gcf,'color','w')


%% 打印出评价指标
% 预测结果评价
ae= abs(test_simu1-output_test);
rmse = (mean(ae.^2)).^0.5;
mse = mean(ae.^2);
mae = mean(ae);
mape = mean(ae./test_simu1);
[R,r] = corr(output_test,test_simu1);
R2 = 1 - norm(output_test -  test_simu1)^2 / norm(output_test-mean(output_test ))^2;
disp('预测结果评价指标:')
disp(['RMSE = ', num2str(rmse)])
disp(['MSE  = ', num2str(mse)])
disp(['MAE  = ', num2str(mae)])
disp(['MAPE = ', num2str(mape)])
disp(['决定系数R^2为:',num2str(R2)])

代码获取

完整代码获取,点击下方卡片,后台回复关键词:

DBOSVM

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/100625.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

芯探科技--泛自动驾驶激光雷达解决方案

泛自动驾驶应用领域: 无人配送车 无人叉车 服务机器人 无人清扫车 …… 泛自动驾驶激光雷达解决方案介绍 在中低速移动过程中,类似无人配送车、无人叉车、服务型机器人、无人清扫车等具有自动驾驶功能的车辆,其需要对周围的环境进行探测,进而实现…

【狂神】Spring5笔记(10-19)

又是美好而努力的一天呀~ __ /|* * * * * * / * * * / * * * * / * * * * * * * happy valentines day * * * * …

linux C++ 海康截图Demo

项目结构 CMakeLists.txt cmake_minimum_required(VERSION 3.7)project(CapPictureTest)include_directories(include)link_directories(${CMAKE_SOURCE_DIR}/lib ${CMAKE_SOURCE_DIR}/lib/HCNetSDKCom) add_executable(CapPictureTest ${CMAKE_SOURCE_DIR}/src/CapPictureTes…

three.js(四):react + three.js

绘制多个立方体 1.搭建reactts 项目 npx create-react-app basics-demo --template typescriptreactts 的用法可参考此链接: https://react-typescript-cheatsheet.netlify.app/docs/basic/setup 2.安装three依赖 npm install three types/three --save3.安装路…

Spring5学习笔记—Spring事务处理

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏: Spring专栏 ✨特色专栏: M…

分享几个 Selenium 自动化常用操作

最近工作会用到selenium来自动化操作一些重复的工作,那么在用selenium写代码的过程中,又顺手整理了一些常用的操作,分享给大家。 常用元素定位方法 虽然有关selenium定位元素的方法有很多种,但是对于没有深入学习,尤…

Liquid UI和Fiori的区别

主要围绕以下几个方面就Liquid UI和Firor来进行比较: 开发周期开发成本稳定性和支援性平台架构 影响Firor决策的因素: 复杂的编程过程,Fiori对开发人员要求高,开发难度大,而Liquid UI让开发人员不需要懂SAP后端&…

python接口自动化(一)--什么是接口、接口优势、类型(详解)

简介 经常听别人说接口测试,接口测试自动化,但是你对接口,有多少了解和认识,知道什么是接口吗?它是用来做什么的,测试时候要注意什么?坦白的说,笔者之前也不是很清楚。接下来先看一下…

PyTorch 模型性能分析和优化 - 第 3 部分

这[1]是关于使用 PyTorch Profiler 和 TensorBoard 分析和优化 PyTorch 模型主题的系列文章的第三部分。我们的目的是强调基于 GPU 的训练工作负载的性能分析和优化的好处及其对训练速度和成本的潜在影响。特别是,我们希望向所有机器学习开发人员展示 PyTorch Profi…

android——spinner下拉弹窗、popupwindow下拉弹窗列表

一、spinner下拉弹窗 效果图如下: adapter的代码: package com.yaona.spinnerimport android.R import android.content.Context import android.graphics.Color import android.view.LayoutInflater import android.view.View import android.view.Vie…

go Session的实现(一)

〇、前言 众所周知,http协议是无状态的,这对于服务器确认是哪一个客户端在发请求是不可能的,因此为了能确认到,通常方法是让客户端发送请求时带上身份信息。容易想到的方法就是客户端在提交信息时,带上自己的账户和密…

3年功能测试经验,面试想拿到15k很难吗?

一直觉得经验多,无论在哪都能找到满意的工作,但是现实却是给我打了一个大巴掌!事后也不会给糖的那种... 个人情况 大概介绍一下个人情况,男,本科,三年多测试工作经验,一毕业因为不成熟的经验以…

【iOS】属性关键字

文章目录 前言一、深拷贝与浅拷贝1、OC的拷贝方式有哪些2. OC对象实现的copy和mutableCopy分别为浅拷贝还是深拷贝?3. 自定义对象实现的copy和mutableCopy分别为浅拷贝还是深拷贝?4. 判断当前的深拷贝的类型?(区别是单层深拷贝还是完全深拷贝…

【原创】H3C交换机链路聚合配置

图示 中间两个交换机,使用两根网线直连,这样本来是10G级联,变成了20G级联。 在默认情况下,这两根线在STP协议下,只有一路是通的,另一路处于备用状态。如果要将这两路都设置为级联,那么还需要…

knife4j 整合 springboot

官方文档:https://doc.xiaominfo.com/knife4j 版本兼容说明:https://doc.xiaominfo.com/docs/quick-start/start-knife4j-version 升级说明:https://doc.xiaominfo.com/docs/upgrading/upgrading-to-v4版本兼容惯关系: springboot…

强大的处理器和接口支持BL304ARM控制器

在智慧医疗领域,BL304可以用于实现医疗设备的智能化、远程监控和数据交换。在智慧电力领域,BL304可以帮助实现电网的智能化管理,提升电力供应的效率。在智慧安防领域,BL304可以实现智能监控、智能门锁等应用,保障安全。…

C# WPF监听USB插入拨出

可以全部监听。好用 private void FormF100WriteCortexLicense_Load(object sender, EventArgs e){this.Text this.Text " " FT_Tools.Program.version;USB USBWatcher new USB();USBWatcher.AddUSBEventWatcher(USBEventHandler, USBEventHandler, new TimeSpa…

高级IO(select、poll、epoll)

在介绍本文之前,先提出一个问题 什么是IO? 等数据拷贝 1.等 - IO事件就绪(检测功能成分) 2.数据拷贝 高效的IO就是:单位时间,等的比重越小,IO的效率越高 五种IO模型 IO模型: 阻塞式…

【项目设计】高并发内存池(Concurrent Memory Pool)

目录 1️⃣项目介绍 🍙项目概述 🍙知识储备 2️⃣内存池介绍 🍙池化技术 🍙内存池 🍙内存池主要解决的问题 🍥内碎片 🍥外碎片 🍙malloc 3️⃣ 定长内存池设计 4️⃣ 项…

Windows docker desktop 基于HyperV的镜像文件迁移到D盘

Docker desktop的HyperV镜像文件,默认是在C盘下 C:\ProgramData\DockerDesktop\vm-data\DockerDesktop.vhdx如果部署的软件较多,文件较大,或者产生日志,甚至数据等,这将会使此文件越来越大,容易导致C盘空间…