Langchain使用介绍之outparser 和memory

  上一篇博客中对Langchain中prompt进行了详细的介绍,此篇博客将介绍Langchain中的outparser和memory。当调用大模型生成内容时,返回的内容默认是string类型,这对于我们获取response中的某些内容信息可能会带来障碍,例如返回的内容本身是json string内容,如果能返回json对象的话,那么获取response中某个对象的值就更加容易,那么如何通过Langchain提供的能力,将输出的内容转换成JSON类型呢?来看看下面的例子。

import openai
import os
from langchain.prompts import (
    HumanMessagePromptTemplate, SystemMessagePromptTemplate, ChatPromptTemplate)
from langchain.chat_models import ChatOpenAI
from langchain.output_parsers import ResponseSchema
from langchain.output_parsers import StructuredOutputParser

openai.api_key = os.environ.get("OPEN_AI_KEY")

customer_review = """\
This leaf blower is pretty amazing.  It has four settings:\
candle blower, gentle breeze, windy city, and tornado. \
It arrived in two days, just in time for my wife's \
anniversary present. \
I think my wife liked it so much she was speechless. \
So far I've been the only one using it, and I've been \
using it every other morning to clear the leaves on our lawn. \
It's slightly more expensive than the other leaf blowers \
out there, but I think it's worth it for the extra features.
"""
review_template = """\
For the following text, extract the following information:

gift: Was the item purchased as a gift for someone else? \
Answer True if yes, False if not or unknown.

delivery_days: How many days did it take for the product\
to arrive? If this information is not found, output -1.

price_value: Extract any sentences about the value or price,\
and output them as a comma separated Python list.

text: {text}
"""
human_template_message = HumanMessagePromptTemplate.from_template(
    review_template)
chat_template = ChatPromptTemplate.from_messages([human_template_message])
message = chat_template.format_messages(text=customer_review)
chat = ChatOpenAI(model_name="gpt-3.5-turbo")
response = chat(message)
print(response.content)

  上面的代码生成的结果如下图所示,从一段文本中提取出了gift,delivery_days和price_value.但是因为不是JSON对象,所以,如果要获取提取出来的某个值是不行的。

  如果想输出JSON格式的数据,应该如何处理呢?首先在prompt增加了{formact_instruction},通过langchain提供的ResponseSchema定义要提取的字段名称,描述信息;接着通过StructureOutputParser生成parser,再调用parser的get_format_instruction方法生成format_instruction.

review_template_2 = """\
For the following text, extract the following information:

gift: Was the item purchased as a gift for someone else? \
Answer True if yes, False if not or unknown.

delivery_days: How many days did it take for the product\
to arrive? If this information is not found, output -1.

price_value: Extract any sentences about the value or price,\
and output them as a comma separated Python list.

text: {text}

{format_instructions}
"""

gift_schema = ResponseSchema(name="gift",
                             description="Was the item purchased\
                             as a gift for someone else? \
                             Answer True if yes,\
                             False if not or unknown.")

delivery_days_schema = ResponseSchema(name="delivery_days",
                                      description="How many days\
                                      did it take for the product\
                                      to arrive? If this \
                                      information is not found,\
                                      output -1.")

price_value_schema = ResponseSchema(name="price_value",
                                    description="Extract any\
                                    sentences about the value or \
                                    price, and output them as a \
                                    comma separated Python list.")

response_schema = [gift_schema, delivery_days_schema, price_value_schema]
out_parser = StructuredOutputParser.from_response_schemas(response_schema)
format_instruction = out_parser.get_format_instructions()
# print(format_instrucation)

human_prompt = HumanMessagePromptTemplate.from_template(review_template_2)
chat_prompt = ChatPromptTemplate.from_messages([human_prompt])
message = chat_prompt.format_messages(
    text=customer_review, format_instructions=format_instruction)
chat = ChatOpenAI(model_name="gpt-3.5-turbo")
response = chat(message)
print(type(response.content))
result = out_parser.parse(response.content)
print(result)
print(result.get('delivery_days'))

  生成的format_instruction如下所示,可以看到实际是一个包含字段名称以及字段类型说明的json对象。

  执行完上面的整体代码,结果如下图所示,可以看到返回的是一个json对象,可以单独打印比如delivery_days的值。

  以上就是如何让输出的内容是JSON对象的实现说明。

  当使用 LangChain 中的储存(Memory)模块时,它可以帮助保存和管理历史聊天消息,以及构建关于特定实体的知识。这些组件可以跨多轮对话储存信息,并允许在对话期间跟踪特定信息和上下文。LangChain 提供了多种储存类型。其中,缓冲区储存允许保留最近的聊天消息,摘要储存则提供了对整个对话的摘要。实体储存 则允许在多轮对话中保留有关特定实体的信息。这些记忆组件都是模块化的,可与其他组件组合使用,从而增强机器人的对话管理能力。储存模块可以通过简单的API调用来访问和更新,允许开发人员更轻松地实现对话历史记录的管理和维护。接下来主要介绍四种类型的Memory,具体如下所示:

  • 对话缓存储存 (ConversationBufferMemory)
  • 对话缓存窗口储存 (ConversationBufferWindowMemory)
  • 对话令牌缓存储存 (ConversationTokenBufferMemory)
  • 对话摘要缓存储存 (ConversationSummaryBufferMemory)
import openai
import os
from langchain.chains import ConversationChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.prompts import (
    SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, ChatMessagePromptTemplate)

openai.api_key = os.environ.get("OPENAI_API_KEY")

model = ChatOpenAI(model_name="gpt-3.5-turbo")
memory = ConversationBufferMemory()
chat = ConversationChain(llm=model, memory=memory, verbose=True)
chat.predict(input="HI, my name is taoli?")
chat.predict(input="What is 1+1?")
chat.predict(input="what is my name?")
print(memory.buffer)

上面的代码使用ConversationBufferMemory来记录整个历史对话,打印memory.buffer的值,结果如下所示:可以看到当第三个问题问AI,what is my name时,AI可以正确回答,应为Memory中存入了整个对话History信息。

  除了在ConversationChain中增加memory对象对memory赋值外,实际也可以对memory对象直接调用save_context()进行赋值,input就是human的输入,output模拟AI的返回。

memoryTwo = ConversationBufferMemory()
memoryTwo.save_context({'input': 'Hi I came from china'}, {
                       'output': 'china is beatiful'})
memoryTwo.save_context({"input": "what is your name"}, {
                       "output": "my name is chatbot"})
print(memoryTwo.buffer)
print(memoryTwo.load_memory_variables({}))

  打印的信息如下图所示,buffer中的信息和ConversionChain生成的一样,调用load_memory_variables({})方法,把整个对话信息连接起来,赋值给history变量。

  如果把所有的history都记录下来,那么每次传入给LLM的文字太多,token消耗很大,所以,langchain还提供了ConversationBufferWindowMemory,通过定义窗口大小,即K的值来控制记录最新的K轮对话历史信息。memory = ConversationBufferWindowMemory(k=1)。

  如果是有大量的文字描述内容,为了节省token以及保证单次对话的token不要超过限制,那么还可以使用ConversationSummaryBufferMemory,使用方式上和ConversationBufferMemory相同。以上就是对Langchain提供的memory的使用介绍。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/98880.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

STM32 CUBEMX CAN通信数据发送失败原因分析

CAN通信是一种数据通信协议,用于在不同设备之间进行通信。它是一种高效的、实时的、可靠的、多主机的、串行通信系统,通常用于汽车电子、工业自动化等领域。CAN通信协议是由德国BOSCH公司于1986年引入,并在欧洲和日本广泛使用。CAN通信具有独…

C# char曲线控件

一、char曲线显示随机数数据 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Runtime.InteropServices; using System.Text; using System.Threading; using Syst…

任意文件读取

文章目录 渗透测试漏洞原理任意文件读取1. 任意文件读取概述1.1 漏洞成因1.2 漏洞危害1.3 漏洞分类1.4 任意文件读取1.4.1 文件读取1.4.2 任意文件读取1.4.3 权限问题 1.5 任意文件下载1.5.1 一般情况1.5.2 PHP实现1.5.3 任意文件下载 2. 任意文件读取攻防2.1 路径过滤2.1.1 过…

安达发|富士康科技集团利用自动排程APS软件打造智慧工厂

富士康科技集团作为全球领先的3C产品研发制造企业,近年来积极布局智能制造领域,通过引入先进的自动化排程系统(APS),成功打造了智慧工厂,提高了生产质量与效率,降低了生产成本。 富士康集团自2019年下半年提出在观澜厂区建立数字可…

W5100S-EVB-PICO进行UDP组播数据回环测试(九)

前言 上一章我们用我们的开发板作为UDP客户端连接服务器进行数据回环测试,那么本章我们进行UDP组播数据回环测试。 什么是UDP组播? 组播是主机间一对多的通讯模式, 组播是一种允许一个或多个组播源发送同一报文到多个接收者的技术。组播源将…

网络渗透day6-面试01

😉 和渗透测试相关的面试问题。 介绍 如果您想自学网络渗透,有许多在线平台和资源可以帮助您获得相关的知识和技能。以下是一些受欢迎的自学网络渗透的平台和资源: Hack The Box: Hack The Box(HTB)是一个受欢迎的平…

华为数通方向HCIP-DataCom H12-821题库(单选题:161-180)

第161题 以下关于 URPF(Unicast Reverse Path Forwarding) 的描述, 正确的是哪一项 A、部署了严格模式的 URPF,也能够可以同时部署允许匹配缺省路由模式 B、如果部署松散模式的 URPF,默认情况下不需要匹配明细路由 C、如果部署松散模式的 URPF,如果需要检查默认路由,则…

ConsoleApplication17_2项目免杀(Fiber+VEH Hook Load)

加载方式FiberVEH Hook Load Fiber是纤程免杀,VEH是异常报错,hook使用detours来hook VirtualAlloc和sleep,通过异常报错调用实现主动hook 纤程Fiber的概念:纤程是比线程的更小的一个运行单位。可以把一个线程拆分成多个纤程&#…

骨传导耳机十大品牌怎么选,骨传导耳机十大品牌排行榜分享

作为一个拥有20多款骨传导耳机来说,我也算是资深的使用者了,在骨传导耳机刚开始兴起的时候,我就开始接触了,近几年越来越多的骨传导耳机品牌诞生,我也是入手了不少,所以也算是对骨传导耳机非常熟悉了&#…

网络有源号角(50W-100W)社区小区广播 工地语音播报,隧道广播,钢铁广播广播系统

网络有源号角(50W-100W)社区小区广播 工地语音播报,隧道广播,钢铁广播广播系统 SV-7042T 50W网络有源号角 SV-7042T是深圳锐科达电子有限公司的一款壁挂式网络有源号角,具有10/100M以太网接口,可将网络音…

【c++5道练习题】①

目录 一、有限制的累加 二、计算日期到天数转换 三、仅仅反转字母 四、 字符串的第一个唯一字符 五、字符串最后一个单词的长度 一、有限制的累加 题述: 求123...n,要求不能使用乘除法、for、while、if、else、switch、case等关键字以及条件判断语句…

计算机网络 | TCP 三次握手四次挥手 |半关闭连接

本来是不愿意写的,可是在实际场景,对具体的描述标志还是模糊不清,基础不扎实,就得承认!!! TCP 连接建立需要解决三大问题: 知道双方存在约定一些参数,如最大滑动窗口值、…

Stable Diffusion 提示词技巧

文章目录 背景介绍如何写好提示词提示词的语法正向提示词负向提示词 随着AI技术的不断发展,越来越多的新算法涌现出来,例如Stable Diffusion、Midjourney、Dall-E等。相较于传统算法如GAN和VAE,这些新算法在生成高分辨率、高质量的图片方面表…

YOLOv5模型压缩:综述

YOLOv5模型压缩:综述 AbstractIntroduction剪枝基于ln-范数修剪模型Feature map activationBatch normalization scaling factor (BNSF)First-order derivativeMutual informationGranularity of Pruning非结构化剪枝结构化剪枝基于通道的修剪基于滤波器的修剪基于核的剪枝关于…

次高端白酒:一场冰火两重的「战局」

【潮汐商业评论/ 原创】 夜深人静,Andy突然想起还没有给爷爷准备生日礼物。 “送酒肯定能让他老人家开心,但是买什么品牌呢?茅台太贵,其他好酒还真不熟。”,对于白酒研究不多的Andy来说,如何挑选到一款称…

【锁】定时任务推送数据-redission加锁实例优化

文章目录 redission 加锁代码-有问题优化代码看门狗是什么? redission 加锁代码-有问题 /*** 收货入库物料标签(包装码)推送接口** throws Exception*/public void synReceiveMaterialTags() throws Exception {String tag DateFormatUtils.format(new Date(), &qu…

自动化实时在线静电监控系统的构成

自动化实时在线静电监控系统是一种帮助企业监测和管理静电问题的技术解决方案。静电在许多工业和商业环境中都是一个潜在的风险和生产问题。通过使用这样的监控系统,企业可以及时发现并采取对策来预防或减轻可能的静电问题。 该系统通常由以下组成部分构成&#xf…

RK3562 VS RK3566 性能解析

RK3562是深圳触觉智能最新推出的一款高性能核心板及其开发套件,采用四核A53Mali G52架构,主频2GHz,内置1T NPU算力以及13M ISP,拥有丰富的外围接口。其次在解码方面,支持H.264 1080P60fps、H.265 4K30fps;编…

深入理解css3背景图边框

border-image知识点 重点理解 border-image-slice 设置的值将边框背景图分为9份,图像中间的舍弃,其他部分图像对应边框的相应区域放置,上右下左四角固定,border-image-repeat设置的是除四角外其他部分的显示方式。 截图来自菜鸟教…

JavaScript Web APIs - 06 正则表达式

Web APIs - 06 文章目录 Web APIs - 06正则表达式正则基本使用元字符边界符量词范围字符类 替换和修饰符正则插件change 事件判断是否有类 目标:能够利用正则表达式完成小兔鲜注册页面的表单验证,具备常见的表单验证能力 正则表达式综合案例阶段案例 正…