python读取图像小工具

一、和图像交互获得图像的坐标和像素值

import cv2
import numpy as np
import signal
import threading
import time





if __name__ == '__main__':

    img = cv2.imread('XXX',0)#读取图片
    font_face,font_scale,thickness=cv2.FONT_HERSHEY_SIMPLEX,0.5,1
    #鼠标交互
    def mouseHandler(event,x,y,flags,param):
        points = (x,y)
        global imgCopy
        #鼠标左键双击事件
        if event == cv2.EVENT_LBUTTONDBLCLK:
            #拷贝一张与原图像格式相同的新图像
            imgCopy = img.copy()
            #拼接文字
            text = '['+str(x)+','+str(y)+']'+str(img[y,x])
            print(text)
            #读取文字(宽,高),下基线
            (t_w,t_h),baseLine = cv2.getTextSize(text,font_face,font_scale,thickness)
            #在鼠标当前位置的左上角显示文字
            cv2.putText(imgCopy,text,(x-t_w,y),font_face,font_scale,(125,125,125))
            cv2.imshow('win',imgCopy)
        #鼠标移动事件
        elif event == cv2.EVENT_MOUSEMOVE:
            #显示原图片能使文本框消失
            cv2.imshow('win',img)

    cv2.namedWindow('win')
    #窗口与回调函数绑定
    cv2.setMouseCallback('win',mouseHandler)
    cv2.imshow('win',img)
    cv2.waitKey()

二、二值化图像

import cv2
import numpy as np
import signal
import threading
import time



if __name__ == '__main__':

    img = cv2.imread('path',0)#读取图片
    ret, binary = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    print("threshold value %s" % ret)  #打印阈值,超过阈值显示为白色,低于该阈值显示为黑色
    cv2.imshow("threshold", binary) #显示二值化图像
    cv2.waitKey(0)
    cv2.destroyAllWindows()

批量图像二值化

import cv2
import numpy as np
import signal
import threading
import time
import os
import sys
import random
import datetime
import argparse

def get_files(path):
    files = []
    for filename in os.listdir(path):
        if os.path.isfile(os.path.join(path, filename)):
            files.append(filename)
    return files


if __name__ == '__main__':

    files_path="XXX"
    #print(files_path)
    image_files = get_files(files_path)
    i=1
    #print(image_files)
    for image_file in image_files:
        image_path=os.path.join(files_path , image_file)
        print(image_path)
        img = cv2.imread(image_path,0)#读取图片
        start_time_init = time.perf_counter()
        ret, binary = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
        end_time_init = time.perf_counter()
        elapsed_time_init = (end_time_init - start_time_init)*1000
        print("二值化时间: {} ms".format(elapsed_time_init))
        print("threshold value %s" % ret)  #打印阈值,超过阈值显示为白色,低于该阈值显示为黑色s
        cv2.imwrite(files_path+"/binary/"+str(i)+".png",binary)
        i=i+1

三、区域合并提取最大连通域

import cv2
import numpy as np
import signal
import threading
import time
import os
import sys
import random
import datetime
import argparse

def get_files(path):
    files = []
    for filename in os.listdir(path):
        if os.path.isfile(os.path.join(path, filename)):
            files.append(filename)
    return files


if __name__ == '__main__':

    #files_path="/home/robot/PaddleOCR-2.6.0/data/OK0828/raw_data/"
    files_path="/home/robot/PaddleOCR-2.6.0/data/829/"
    files_path="/home/robot/PaddleOCR-2.6.0/data/NG0823/"
    #print(files_path)
    image_files = get_files(files_path)
    i=1
    #print(image_files)
    for image_file in image_files:
        image_path=os.path.join(files_path , image_file)
        print(image_path)
        img = cv2.imread(image_path,0)#读取图片
        start_time_init = time.perf_counter()
        ret, binary = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
        end_time_init = time.perf_counter()
        elapsed_time_init = (end_time_init - start_time_init)*1000
        print("二值化时间: {} ms".format(elapsed_time_init))
        print("threshold value %s" % ret)  #打印阈值,超过阈值显示为白色,低于该阈值显示为黑色s
        cv2.imwrite(files_path+"/binary/"+str(i)+".png",binary)
        i=i+1
        # cv2.imshow("threshold", binary) #显示二值化图像
        # cv2.waitKey(0)
        # cv2.destroyAllWindows()
        start_time = time.perf_counter()
        num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary)
        end_time = time.perf_counter()
        elapsed_time = (end_time - start_time)*1000
        print("连通域的时间: {} ms".format(elapsed_time))

        max_area=0
        j=0
        for st in stats[1:]:
            j=j+1
            area=st[4]
            if(max_area<area):
                max_area=area
                index=j
            
        print("index",index)
        print("max_area",max_area)


        #index=index+1
        print('num_labels: ', num_labels)
        labels[labels>0] = 255
        labels = labels.astype(np.uint8)
        # #将一维灰度图像扩展到三维
        labels= np.expand_dims(labels,axis=2).repeat(3,axis=2).astype(np.uint8)
        # for st in stats[1:]:
        cv2.rectangle(labels, (stats[index][0], stats[index][1]), (stats[index][0]+stats[index][2], stats[index][1]+stats[index][3]), (0, 255, 0), 3)
        #cv2.imshow('labels', labels)
        #cv2.waitKey(0)
        cv2.imwrite(files_path+"/labels/"+str(i)+".png",labels)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/98836.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

香港服务器快还是台湾服务器快?

​  基于机房位置不同&#xff0c;香港服务器相对于台湾服务器在访问速度方面有一定的优势。香港服务器拥有CN2线路&#xff0c;因此访问速度较快。在网络服务商方面&#xff0c;中华电信等台湾服务商提供的带宽也具有很高的性价比。 香港服务器对大陆用户的影响 对于大陆用户…

掌握这个工具,轻松管理所有物流信息

在电子商务高度发达的今天&#xff0c;物流快递行业在全球范围内发挥着至关重要的作用。然而&#xff0c;在如此复杂的物流环境中&#xff0c;快递退回件的管理和查询成为了一个难题。为了解决这个问题&#xff0c;我们有一个神奇的工具——快递批量查询高手。 快递批量查询高…

聚观早报|阿维塔完成B轮融资;文心一言向全社会开放

【聚观365】9月1日消息 阿维塔完成B轮融资 文心一言向全社会开放 长安汽车上半年销量超121万辆 北京工人体育场5G超级网络启用 挚文集团Q2净利润5.684亿元 阿维塔完成B轮融资 日前&#xff0c;阿维塔科技宣布完成B轮融资&#xff0c;募集资金30亿元&#xff0c;投后估值近…

在CentOS7中,安装并配置Redis【个人笔记】

一、拓展——Ubuntu上安装Redis 输入命令su --->切换到root用户【如果已经是&#xff0c;则不需要进行该操作】apt search redis --->使用apt命令来搜索redis相关的软件包【查询后&#xff0c;检查redis版本是否是你需要的&#xff0c;如果不是则需要看看其他资料~】ap…

易基因:De novo组装和转录组表征:东方田鼠原发性卵巢癌机制新见解|项目文章

大家好&#xff0c;这里是专注表观组学十余年&#xff0c;领跑多组学科研服务的易基因。 2022年&#xff0c;中南大学湘雅医学院周智君教授团队在Mol Med Rep发表了题为" De novo assembly and transcriptome characterization: Novel insights into the mechanisms of p…

Linux的内存理解

建议 Mysql机器 尽量不要硬swap,如果是ssd磁盘还好。Free命令 free 命令显示系统内存的使用情况,包括物理内存、交换内存(swap)和内核缓冲区内存 输出简介: Mem 行(第二行)是内存的使用情况。Swap 行(第三行)是交换空间的使用情况。total 列显示系统总的可用物理内存和交换…

Ansible学习笔记3

ansible模块&#xff1a; ansible是基于模块来工作的&#xff0c;本身没有批量部署的能力&#xff0c;真正具有批量部署的是ansible所运行的模块&#xff0c;ansible只是提供一个框架。 ansible支持的模块非常多&#xff0c;我们并不需要把每个模块记住&#xff0c;而只需要熟…

免费OCR图像识别文字识别API

免费OCR图像识别文字识别API 一、OCR图像识别文字识别二、使用步骤1、接口2、请求参数3、请求参数示例4、接口 返回示例 三、温馨提示 一、OCR图像识别文字识别 光学字符识别&#xff08;Optical Character Recognition, OCR&#xff09;是指对文本资料的图像文件进行分析识别…

解决legend数据过多,使用滚动,但进行后图形样式发生变化

前言&#xff1a; 滚动前&#xff1a; 滚动后&#xff1a; 滚动前后&#xff0c;饼状图中的内容除了“城市规划”和“城市管理部件”两个分类进行了位置的交换&#xff0c;没有其他的变化&#xff0c;数据也没有增加&#xff0c;但是&#xff0c;样式就是不知道为啥发生了变化。…

[maven]关于pom文件中的<relativePath>标签

关于pom文件中的<relativePath>标签 为什么子工程要使用relativePath准确的找到父工程pom.xml.因为本质继承就是pom的继承。父工程pom文件被子工程复用了标签。&#xff08;可以说只要我在父工程定义了标签&#xff0c;子工程就可以没有&#xff0c;因为他继承过来了&…

趣味微项目:玩转Python编程,轻松学习快乐成长!

&#x1f482; 个人网站:【工具大全】【游戏大全】【神级源码资源网】&#x1f91f; 前端学习课程&#xff1a;&#x1f449;【28个案例趣学前端】【400个JS面试题】&#x1f485; 寻找学习交流、摸鱼划水的小伙伴&#xff0c;请点击【摸鱼学习交流群】 在学习Python编程的旅程…

web端调用本地摄像头麦克风+WebRTC腾讯云,实现直播功能

目录 关于直播直播流程直播视频格式封装推流和拉流 获取摄像头和麦克风权限navigator.getUserMedia()MediaDevices.getUserMedia() WebRTC腾讯云快直播 关于直播 视频直播技术大全、直播架构、技术原理和实现思路方案整理 直播流程 视频采集端&#xff1a; 1、视频采集&#…

[Spring Boot] 开发时可以运行,但Maven打包后,无法运行

问题&#xff1a;开发过程中一切正常&#xff0c;但在打包后&#xff0c;使用java -jar运行jar包时报错 Exception in thread "main" java.lang.UnsupportedClassVersionError: org/springframework/boot/loader/JarLauncher has been compiled by a more recent ver…

【Latex】使用技能站:(三)使用 Vscode 配置 LaTeX

使用 Vscode 配置 LaTeX 引言1 安装texlive2 安装vscode2.1 插件安装2.2 配置 3 安装SumatraPdf3.1 vscode配置3.2 配置反向搜索 引言 安装texlive 安装vscode 安装SumatraPdf 1 安装texlive 在线LaTeX编辑器&#xff1a;https://www.overleaf.com TeX Live下载&#xff1a;h…

环境异常总结

1.vue项目 npm run dev 运行时报错&#xff1a;webpack-dev-server --inline --progress --config build/webpack.dev.conf.js 不是内部或外部命令 原因&#xff1a;webpack-dev-server存在问题 解决方案&#xff1a;指定 webpack-dev-server 低版本号 方法&#xff1a; 删除 …

Python爬虫-某网酒店数据

前言 本文是该专栏的第5篇,后面会持续分享python爬虫案例干货,记得关注。 本文以某网的酒店数据为例,实现根据目标城市获取酒店数据。具体思路和方法跟着笔者直接往下看正文详细内容。(附带完整代码) 正文 地址:aHR0cHM6Ly93d3cuYnRoaG90ZWxzLmNvbS9saXN0L3NoYW5naGFp …

【LeetCode】84.柱状图中最大的矩形

题目 给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1 。 求在该柱状图中&#xff0c;能够勾勒出来的矩形的最大面积。 示例 1: 输入&#xff1a;heights [2,1,5,6,2,3] 输出&#xff1a;10 解释&#xff1a;最大的…

大数据精准营销怎么满足用户的个性化需求?

近年来在AI和媒体的带动下&#xff0c;大数据分析不断介入&#xff0c;各行各业都开始陆续依仗大数据营销这棵大树&#xff0c;以此来更加高效、便捷、智能、精准的服务于用户。 这就像追求恋人一样&#xff0c;投其所好方能成为眷属。 大数据精准营销的好处&#xff1a; 相…

JavaScript基本数组操作

在JavaScript中&#xff0c;内置了很多函数让我们可以去对数组进行操作&#xff0c;本文我们就来学习这些函数吧 添加元素 push ● push可以让我们在数组后面再添加一个数据&#xff0c;例如 const friends ["张三", "李四", "王五"]; frie…

(vue)Vue项目中使用jsPDF和html2canvas生成PDF

(vue)Vue项目中使用jsPDF和html2canvas生成PDF 效果&#xff1a; 安装与使用 1.&#xff1a;安装jsPDF和html2canvas npm install jspdf html2canvas2.在需要生成PDF文档的组件中引入jsPDF和html2canvas <template><div><el-button type"primary"…