- 🍨 本文为🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者:K同学啊
数据集包含2149名患者的广泛健康信息,每名患者的ID范围从4751到6900不等。该数据集包括人口统计详细信息、生活方式因素、病史、临床测量、认知和功能评估、症状以及阿尔兹海默症的诊断。
一、前期准备工作
1.设置硬件设备
import numpy as np
import pandas as pd
import torch
from torch import nn
import torch.nn.functional as F
import seaborn as sns
#设置GPU训练,也可以使用CPU
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
结果输出:
2.导入数据
df = pd.read_csv("alzheimers_disease_data.csv")
# 删除第一列和最后一列
df = df.iloc[:, 1:-1]
print(df)
结果输出:
二、构建数据集
1.标准化
#构建数据集
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
X = df.iloc[:,:-1]
y = df.iloc[:,-1]
# 将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的
sc = StandardScaler()
X = sc.fit_transform(X)
2.划分数据集
#划分数据集
X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.1,
random_state = 1)
print(X_train.shape, y_train.shape)
3.构建数据加载器
#构建数据加载器
from torch.utils.data import TensorDataset, DataLoader
train_dl = DataLoader(TensorDataset(X_train, y_train),
batch_size=64,
shuffle=False)
test_dl = DataLoader(TensorDataset(X_test, y_test),
batch_size=64,
shuffle=False)
输出结果:
三、模型训练
1.构建模型
#构建模型
class model_rnn(nn.Module):
def __init__(self):
super(model_rnn, self).__init__()
self.rnn0 = nn.RNN(input_size=32, hidden_size=200,
num_layers=1, batch_first=True)
self.fc0 = nn.Linear(200, 50)
self.fc1 = nn.Linear(50, 2)
def forward(self, x):
out, hidden1 = self.rnn0(x)
out = self.fc0(out)
out = self.fc1(out)
return out
model = model_rnn().to(device)
print(model)
结果输出:
如何来看模型的输出数据集格式是什么?
#查看数据集输出格式是什么
print(model(torch.rand(30,32).to(device)).shape)
结果输出:
2.定义训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
3.定义测试函数
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
4.正式训练模型
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 5e-5 # 学习率
opt = torch.optim.Adam(model.parameters(),lr=learn_rate)
epochs = 50
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前的学习率
lr = opt.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
epoch_test_acc*100, epoch_test_loss, lr))
print("="*20, 'Done', "="*20)
输出结果:
四、模型评估
1.Loss与Accuracy图
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 200 #分辨率
from datetime import datetime
current_time = datetime.now() # 获取当前时间
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
输出结果:
2.混淆矩阵
print("=========输入数据Shape为=========")
print("X_test.shape: ", X_test.shape)
print("y_test.shape: ", y_test.shape)
pred = model(X_test.to(device)).argmax(1).cpu().numpy()
print("\n======输出数据Shape为 ======")
print("pred.shape: ",pred.shape)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
#计算混淆矩阵
cm = confusion_matrix(y_test, pred)
plt.figure(figsize=(6,5))
plt.suptitle('')
sns.heatmap(cm, annot=True, fmt="d",cmap="Blues")
#修改字体大小
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.title("Confusion Matrix", fontsize=12)
plt.xlabel("Predicted Label",fontsize=10)
plt.ylabel("True Label", fontsize=10)
#显示图
plt.tight_layout()
plt.show()
3.调用模型进行预测
text_X = X_test[0].reshape(1,-1) #test[0]为输入数据
pred = model(test_X.to(device)).argmax(1).item()
print("模型预测结果为:“,pred")
print("=="*20)
print("0:未患病")
print("1:已患病")
五、优化特征选择版
特征选择的思路值得学习。
数据维度多,一般是先特征提取,降维等操作。
特征提取:①首先想到相关性分析,用热力图,但分析得出与是否患病相关性比较强的只有四个特征,而日常以为的年龄、日常生活得分这些没有看出有相关性。②通过画图分析特征是否与目标有关,但特征纬度多,不是有效的一个方式。③采用随机森林进行分析,效果很好。
六、总结
根据对数据的预处理,帮助实验精度提高。RNN也是很基础的模型,跟着教案,逐渐开始体会实验的思路。看完流程图,也对自己该怎么干,如何干有了大致的方向。