【Redis 原理】通信协议 内存回收

文章目录

  • 通信协议--RESP
  • 内存回收
    • 内存过期策略
      • 惰性删除
      • 周期删除
    • 内存淘汰策略

通信协议–RESP

Redis是一个CS架构的软件,通信一般分两步(不包括pipeline和PubSub):

  1. 客户端(client)向服务端(server)发送一条命令
  2. 服务端解析并执行命令,返回响应结果给客户端

因此客户端发送命令的格式、服务端响应结果的格式必须有一个规范,这个规范就是通信协议。

而在Redis中采用的是RESPRedis Serialization Protocol)协议:

  • Redis 1.2版本引入了RESP协议
  • Redis 2.0版本中成为与Redis服务端通信的标准,称为RESP2
  • Redis 6.0版本中,从RESP2升级到了RESP3协议,增加了更多数据类型并且支持6.0的新特性–客户端缓存

但目前,默认使用的依然是RESP2协议,也是我们要学习的协议版本(以下简称RESP)

在RESP中,通过首字节的字符来区分不同数据类型,常用的数据类型包括5种:

  1. 单行字符串:首字节是 + ,后面跟上单行字符串,以CRLF( "\r\n" )结尾。例如返回OK+OK\r\n
    由此可见:单行字符串中不能包含一些特殊字符(如\r\n等),是非二进制安全的

  2. 错误(Errors):首字节是 -,与单行字符串格式一样,只是字符串是异常信息,例如:-Error message\r\n

  3. 数值:首字节是 :,后面跟上数字格式的字符串,以CRLF结尾。例如::10\r\n

  4. 多行字符串:首字节是 $,表示二进制安全的字符串,最大支持512MB:
    如果大小为0,则代表空字符串$0\r\n\r\n
    如果大小为-1,则代表不存在$-1\r\n

  5. 数组:首字节是 *,后面跟上数组元素个数,再跟上元素,元素数据类型不限

内存回收

Redis之所以性能强,最主要的原因就是基于内存存储

然而单节点的Redis其内存大小不宜过大,会影响持久化或主从同步性能。

我们可以通过修改配置文件来设置Redis的最大内存:

# 格式:
# maxmemory <bytes>
# 例如:
maxmemory 1gb

当内存使用达到上限时,就无法存储更多数据了。

为了解决这个问题,Redis提供了一些策略实现内存回收:
内存过期策略 && 内存淘汰策略

内存过期策略

Redis可以通过expire命令给Redis的key设置TTL(存活时间):
在这里插入图片描述
可以发现,当key的TTL到期以后,再次访问name返回的是nil,说明这个key已经不存在了,对应的内存也得到释放。从而起到内存回收的目的。

但是这背后是怎么实现的?让我们从以下两个问题入手:

Q1:Redis是如何知道一个key是否过期呢?

Redis本身是一个典型的key-value内存存储数据库,因此所有的key、value都保存在之前学习过的Dict结构中。
并且在其database结构体中,有两个关键Dict:一个用来记录key-value;另一个用来记录key-TTL,定义如下:

typedef struct redisDb {
    dict *dict;                 /* 存放所有key及value的地方,也被称为keyspace*/
    dict *expires;              /* 存放每一个key及其对应的TTL存活时间,只包含设置了TTL的key*/
    dict *blocking_keys;        /* Keys with clients waiting for data (BLPOP)*/
    dict *ready_keys;           /* Blocked keys that received a PUSH */
    dict *watched_keys;         /* WATCHED keys for MULTI/EXEC CAS */
    int id;                     /* Database ID,0~15 */
    long long avg_ttl;          /* 记录平均TTL时长 */
    unsigned long expires_cursor; /* expire检查时在dict中抽样的索引位置. */
    list *defrag_later;         /* 等待碎片整理的key列表. */
} redisDb;

因此到这里我们可以解答Q1:利用两个Dict分别记录key-value对及key-ttl键值对,这样就可以查询一个key是否过期

Q2:是不是TTL到期就立即删除了呢?
NO,TTL到期的key并不是立即删除,而是采用如下策略:
惰性删除 && 周期删除

惰性删除

顾明思议并不是在TTL到期后就立刻删除,而是在访问一个key的时候,检查该key的存活时间,如果已经过期才执行删除

核心代码片段如下:

// 查找一个key执行写操作
robj *lookupKeyWriteWithFlags(redisDb *db, robj *key, int flags) {
    // 检查key是否过期
    expireIfNeeded(db,key);
    return lookupKey(db,key,flags);
}
// 查找一个key执行读操作
robj *lookupKeyReadWithFlags(redisDb *db, robj *key, int flags) {
    robj *val;
    // 检查key是否过期    
    if (expireIfNeeded(db,key) == 1) {
        // ...略
    }
    return NULL;
}

int expireIfNeeded(redisDb *db, robj *key) {
    // 判断是否过期,如果未过期直接结束并返回0
    if (!keyIsExpired(db,key)) return 0;
    // ... 略
    // 删除过期key
    deleteExpiredKeyAndPropagate(db,key);
    return 1;
}

可以看到不论是查找一个key做读还是写操作,都会调用expireIfNeeded函数来判断当前key是否过期,如果过期就会删除该key

那么这就有一个问题:如果一个key我们设置了TTL,并且它已经过期了,但是一直没有人去访问这个key,如果redis仅仅靠惰性删除的话,显然这个本该删除的key就永远不可能删除了。这显然是不合理的。因此有了下面的周期删除。

周期删除

通过一个定时任务,周期性的抽样部分过期的key,然后执行删除。执行周期有两种:

  1. Redis服务初始化函数initServer()中设置定时任务,按照server.hz的频率来执行过期key清理,模式为SLOW,核心代码如下:
// server.c
void initServer(void){
    // ...
    // 创建定时器,关联回调函数serverCron,处理周期取决于server.hz,默认10
    aeCreateTimeEvent(server.el, 1, serverCron, NULL, NULL) 
}


// server.c
int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
    // 更新lruclock到当前时间,为后期的LRU和LFU做准备
    unsigned int lruclock = getLRUClock();
    atomicSet(server.lruclock,lruclock);
    // 执行database的数据清理,例如过期key处理
    databasesCron();
}

void databasesCron(void) {
    // 尝试清理部分过期key,清理模式默认为SLOW
    activeExpireCycle(
          ACTIVE_EXPIRE_CYCLE_SLOW);
}
  1. Redis的每个事件循环前会调用beforeSleep()函数,执行过期key清理,模式为FAST
void beforeSleep(struct aeEventLoop *eventLoop){
    // ...
    // 尝试清理部分过期key,清理模式默认为FAST
    activeExpireCycle(ACTIVE_EXPIRE_CYCLE_FAST);
}

SLOW模式规则:

  1. 执行频率受server.hz影响,默认为10,即每秒执行10次,每个执行周期100ms。
  2. 执行清理耗时不超过一次执行周期的25%.默认slow模式耗时不超过25ms
  3. 逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期
  4. 如果没达到时间上限(25ms)并且过期key比例大于10%,再进行一次抽样,否则结束

FAST模式规则(过期key比例小于10%不执行 ):

  1. 执行频率受beforeSleep()调用频率影响,但两次FAST模式间隔不低于2ms
  2. 执行清理耗时不超过1ms
  3. 逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期
  4. 如果没达到时间上限(1ms)并且过期key比例大于10%,再进行一次抽样,否则结束

内存淘汰策略

当Redis内存使用达到设置的上限时,主动挑选部分key删除以释放更多内存的流程

Redis会在处理客户端命令的方法processCommand()中尝试做内存淘汰:

int processCommand(client *c) {
    // 如果服务器设置了server.maxmemory属性,并且并未有执行lua脚本
    if (server.maxmemory && !server.lua_timedout) {
        // 尝试进行内存淘汰performEvictions
        int out_of_memory = (performEvictions() == EVICT_FAIL);
        // ...
        if (out_of_memory && reject_cmd_on_oom) {
            rejectCommand(c, shared.oomerr);
            return C_OK;
        }
        // ....
    }
}

Redis支持8种不同策略来选择要删除的key:

  1. noeviction不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略
  2. volatile-ttl: 对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰
  3. allkeys-random:对全体key随机进行淘汰。也就是直接从db->dict中随机挑选
  4. volatile-random:对设置了TTL的key随机进行淘汰。也就是从db->expires中随机挑选
  5. allkeys-lru: 对全体key,基于LRU算法进行淘汰
  6. volatile-lru: 对设置了TTL的key,基于LRU算法进行淘汰
  7. allkeys-lfu: 对全体key,基于LFU算法进行淘汰
  8. volatile-lfu: 对设置了TTL的key,基于LFU算法进行淘汰

比较容易混淆的有两个:
LRU(Least Recently Used),最少最近使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高

LFU(Least Frequently Used),最少频率使用。会统计每个key的访问频率值越小淘汰优先级越高

对于上面的8种策略,可以通过如下字段设置具体的策略:
在这里插入图片描述

我们着重了解一下LRU和LFU的实现方式

我们都知道,Redis的数据都会被封装为RedisObject结构:

typedef struct redisObject {
    unsigned type:4;        // 对象类型
    unsigned encoding:4;    // 编码方式
    unsigned lru:LRU_BITS;  // LRU:以秒为单位记录最近一次访问时间,长度24bit
			  // LFU:高16位以分钟为单位记录最近一次访问时间,低8位记录逻辑访问次数
    int refcount;           // 引用计数,计数为0则可以回收
    void *ptr;              // 数据指针,指向真实数据
} robj;

其中 unsigned lru:LRU_BITS; 根据maxmemory-policy可以设置具体的策略:

  1. maxmemory-policy allkeys-lrumaxmemory-policy volatile-lru
    此时obj种的lru以秒为单位记录最近一次访问时间,长度24bit
  2. maxmemory-policy allkeys-lfumaxmemory-policy volatile-lfu
    此时obj种的lru的高16位以分钟为单位记录最近一次访问时间,低8位记录逻辑访问次数
    问:何为逻辑访问次数?
    答:LFU的访问次数之所以叫做逻辑访问次数,是因为并不是每次key被访问都计数,而是通过以下运算方式:
    ①生成0~1之间的随机数R
    ②计算 (旧次数 * lfu_log_factor + 1),记录为P
    ③如果 R < P ,则计数器 + 1,且最大不超过255
    ④访问次数会随时间衰减,距离上一次访问时间每隔 lfu_decay_time 分钟(默认是1),计数器 -1

具体的淘汰策略如下图所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/976207.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【GreenHills】GHS合并库文件

1、 文档目标 解决Green Hills对于多个库文件合并问题 2、 问题场景 客户具有多个工程库文件。但是&#xff0c;客户想要在项目最终交付的时候&#xff0c;通过将多个库文件打包成一个库文件&#xff0c;进行交付。 3、软硬件环境 1&#xff09;、软件版本&#xff1a;MULTI…

山东大学软件学院nosql实验四

实验题目&#xff1a; 使用Java做简单数据插入 实验内容 用API方式&#xff0c;做数据插入。 使用Java语言实现数据插入界面&#xff0c;为实验一建立的学生、教师、课程表插入数据&#xff0c;可以在前端界面中录入数据之后保存&#xff0c;也可以导入Excel中的数据。 实…

nodejs npm install、npm run dev运行的坎坷之路

1、前面的种种都不说了&#xff0c;好不容易运行起来oap-portal项目&#xff0c;运行idm-ui项目死活运行不起来&#xff0c;各种报错&#xff0c;各种安装&#xff0c;各种卸载nodejs&#xff0c;卸载nvm&#xff0c;重装&#xff0c;都不好使。 2、甚至后来运行npm install会…

20250223下载并制作RTX2080Ti显卡的显存的测试工具mats

20250223下载并制作RTX2080Ti显卡的显存的测试工具mats 2025/2/23 23:23 缘起&#xff1a;我使用X99的主板&#xff0c;使用二手的RTX2080Ti显卡【显存22GB版本&#xff0c;准备学习AI的】 但是半年后发现看大码率的视频容易花屏&#xff0c;最初以为是WIN10经常更换显卡/来回更…

计算机毕业设计Hadoop+Spark+DeepSeek-R1大模型民宿推荐系统 hive民宿可视化 民宿爬虫 大数据毕业设计(源码+文档+PPT+讲解)

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

centos 7 安装python3 及pycharm远程连接方法

安装openssl 使用pip3安装 virtualenv的时候会提示WARNING: pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available. 这是因为缺少openssl 2.0以上版本 解决办法&#xff1a; 一、先确认版本 openssl version 二、安…

DeepSeek 助力 Vue 开发:打造丝滑的文本输入框(Text Input)

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…

Bybit最大资金盗窃事件技术分析 by CertiK

事件概述 2025年2月21日UTC时间下午02:16:11,Bybit的以太坊冷钱包(0x1db92e2eebc8e0c075a02bea49a2935bcd2dfcf4[1])因恶意合约升级遭到资金盗取。根据Bybit CEO Ben Zhou的声明[2],攻击者通过钓鱼攻击诱骗冷钱包签名者错误签署恶意交易。他提到,该交易被伪装为合法操作:…

欧拉筛法寻找素数与计算欧拉函数求和

欧拉筛法寻找素数与计算欧拉函数求和 一、欧拉函数1.1定义1.2性质1.3唯一分解定理&#xff08;算术基本定理&#xff09; 二、Eratosthenes筛法寻找素数三、欧拉筛法寻找素数3.1算法代码3.2算法分析3.2.1时间复杂度分析&#xff08;对合数进行不重复筛选&#xff09;3.2.2算法正…

VScode 开发

目录 安装 VS Code 创建一个 Python 代码文件 安装 VS Code VSCode&#xff08;全称&#xff1a;Visual Studio Code&#xff09;是一款由微软开发且跨平台的免费源代码编辑器&#xff0c;VSCode 开发环境非常简单易用。 VSCode 安装也很简单&#xff0c;打开官网 Visual S…

政安晨【零基础玩转各类开源AI项目】DeepSeek 多模态大模型Janus-Pro-7B,本地部署!支持图像识别和图像生成

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 目录 下载项目 创建虚拟环境 安装项目依赖 安装 Gradio&#xff08;UI&#xff09; 运…

开发 picgo-plugin-huawei 插件,解决华为云社区外链限制问题

开发 picgo-plugin-huawei 插件&#xff0c;解决华为云社区外链限制问题 在技术博客平台中&#xff0c;外链的使用常常受到限制&#xff0c;这给我们的写作和内容展示带来了一定的不便。为了应对这一问题&#xff0c;我开发了 picgo-plugin-huawei 插件&#xff0c;它能够有效…

QT 基础知识点

1.基础窗口类QMainWindow qDialog Qwidget 随项目一起创建的窗口基类有三个可选QMainWindow qDialog Qwidget 1.1 Qwidget 是所有窗口的基类&#xff0c;只要是他的子类&#xff0c;或子类的子类&#xff0c;都具有他的属性。 右键项目 Add New -> Qt qt设计师界面类&am…

【OMCI实践】ONT上线过程的omci消息(五)

引言 在前四篇文章中&#xff0c;主要介绍了ONT上线过程的OMCI交互的第一、二、三个阶段omci消息&#xff0c;本篇介绍第四个阶段&#xff0c;OLT下发配置到ONT。前三个阶段&#xff0c;每个厂商OLT和ONT都遵循相同标准&#xff0c;OMCI的交换过程大同小异。但第四个阶段&…

WebXR教学 02 配置开发环境

默认操作系统为Windows 1.VS Code VS Code 是一款轻量级、功能强大的代码编辑器&#xff0c;适用于多种编程语言。 下载 步骤 1&#xff1a;访问 VS Code 官方网站 打开浏览器&#xff08;如 Chrome、Edge 等&#xff09;。 在地址栏输入以下网址&#xff1a; https://code.v…

云计算及其他计算

云计算知识思维导图&#xff1a;https://kdocs.cn/l/cpl2Kizx7IyC 云计算的核心判断标准通常基于美国国家标准与技术研究院&#xff08;NIST&#xff09;的定义&#xff0c;并结合实际应用场景。以下是判断一个服务是否为云计算的关键标准&#xff0c;以及对应的服务类型&#…

记录首次安装远古时代所需的运行环境成功npm install --save-dev node-sass

最开始的报错&#xff1a; 最后根据报错一步步 安装所需要的pythong之类的环境&#xff0c;最后终于成功了&#xff0c;得以让我在github上拉的vuehr项目&#xff08;狗头18年还是20年的远古项目&#xff09;成功本地运行&#xff0c;最后附上本地运行成功的贴图。如果大家也在…

WordPress Elementor提示错误无法保存500的解决指南

500内部服务器错误是一种常见的服务器错误&#xff0c;通常由网站的服务器环境引起。这种错误可能导致网站无法正常访问&#xff0c;影响用户体验。本文将探讨500错误的常见原因&#xff0c;并提供解决方案&#xff0c;特别针对使用Elementor构建的WordPress网站。 500错误的常…

DeepSeek写俄罗斯方块手机小游戏

DeepSeek写俄罗斯方块手机小游戏 提问 根据提的要求&#xff0c;让DeepSeek整理的需求&#xff0c;进行提问&#xff0c;内容如下&#xff1a; 请生成一个包含以下功能的可运行移动端俄罗斯方块H5文件&#xff1a; 核心功能要求 原生JavaScript实现&#xff0c;适配手机屏幕 …

题解:洛谷 P11785 「FAOI-R4」手写的从前

题目https://www.luogu.com.cn/problem/P11785赛时写出来的&#xff0c;可惜报名晚了一些&#xff08;大概 1h&#xff09;&#xff0c;卡在第 363 名。 首先&#xff0c;我们对 进行二进制拆分&#xff0c;拆成若干个二的幂相加的形式。 随后&#xff0c;如果这个序列的长度…