4. MySQL 逻辑架构说明

4. MySQL 逻辑架构说明

文章目录

  • 4. MySQL 逻辑架构说明
  • 1. 逻辑架构剖析
    • 1.1 服务器处理客户端请求
    • 1.2 Connectors(连接器)
    • 1.3 第1层:连接层
    • 1.4 第2层:服务层
    • 1.5 第3层:引擎层
    • 1.6 存储层
  • 2. SQL执行流程
    • 2.1 MySQL 中的 SQL 执行流程
  • 2.2 MySQL8中SQL执行原理
  • 最后:


1. 逻辑架构剖析

1.1 服务器处理客户端请求

那服务器进程对客户端进程发送的请求做了什么处理,才能产生最后的处理结果呢?这里以查询请求为 例展示:

在这里插入图片描述

下面具体展开看一下:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

1.2 Connectors(连接器)

1.3 第1层:连接层

系统(客户端)访问 MySQL 服务器前,做的第一件事就是建立 TCP连接。

经过三次握手建立连接成功后, MySQL 服务器对 TCP 传输过来的账号密码做身份认证、权限获取。

  • 用户名或密码不对,会收到一个Access denied for user错误,客户端程序结束执行
  • 用户名密码认证通过,会从权限表查出账号拥有的权限与连接关联,之后的权限判断逻辑,都将依 赖于此时读到的权限

TCP 连接收到请求后,必须要分配给一个线程专门与这个客户端的交互。所以还会有个线程池,去走后 面的流程。每一个连接从线程池中获取线程,省去了创建和销毁线程的开销。

1.4 第2层:服务层

  • SQL Interface: SQL接口
  • 接收用户的SQL命令,并且返回用户需要查询的结果。比如SELECT … FROM就是调用SQL Interface
  • MySQL支持DML(数据操作语言)、DDL(数据定义语言)、存储过程、视图、触发器、自定 义函数等多种SQL语言接口
  • Parser: 解析器:
  • 在解析器中对 SQL 语句进行语法分析、语义分析。将SQL语句分解成数据结构,并将这个结构 传递到后续步骤,以后SQL语句的传递和处理就是基于这个结构的。如果在分解构成中遇到错 误,那么就说明这个SQL语句是不合理的。
  • 在SQL命令传递到解析器的时候会被解析器验证和解析,并为其创建 语法树 ,并根据数据字 典丰富查询语法树,会 验证该客户端是否具有执行该查询的权限 。创建好语法树后,MySQL还 会对SQl查询进行语法上的优化,进行查询重写。
  • Optimizer: 查询优化器
  • SQL语句在语法解析之后、查询之前会使用查询优化器确定 SQL 语句的执行路径,生成一个 执行计划
  • 这个执行计划表明应该 使用哪些索引 进行查询(全表检索还是使用索引检索),表之间的连 接顺序如何,最后会按照执行计划中的步骤调用存储引擎提供的方法来真正的执行查询,并将 查询结果返回给用户。
  • 它使用“ 选取-投影-连接 ”策略进行查询。例如:
SELECT id,name FROM student WHERE gender = '女';

这个SELECT查询先根据WHERE语句进行 选取 ,而不是将表全部查询出来以后再进行gender过 滤。 这个SELECT查询先根据id和name进行属性 投影 ,而不是将属性全部取出以后再进行过 滤,将这两个查询条件 连接 起来生成最终查询结果。

  • Caches & Buffers: 查询缓存组件
  • MySQL内部维持着一些Cache和Buffer,比如Query Cache用来缓存一条SELECT语句的执行结 果,如果能够在其中找到对应的查询结果,那么就不必再进行查询解析、优化和执行的整个过 程了,直接将结果反馈给客户端。
  • 这个缓存机制是由一系列小缓存组成的。比如表缓存,记录缓存,key缓存,权限缓存等 。
  • 这个查询缓存可以在 不同客户端之间共享 。
  • 从MySQL 5.7.20开始,不推荐使用查询缓存,并在 MySQL 8.0中删除 。

缓存故事:

如果我问你9+8×16-3×2×17的值是多少,你可能会用计算器去算一下,最终结果35。如果再问你一遍9+8×16- 3×2×17的值是多少,你还用再傻呵呵的再算一遍吗?我们刚刚已经算过了,直接说答案就好了。

1.5 第3层:引擎层

插件式存储引擎层( Storage Engines), 真正的负责了MySQL中数据的存储和提取,对物理服务器级别 维护的底层数据执行操作 ,服务器通过API与存储引擎进行通信。不同的存储引擎具有的功能不同,这样 我们可以根据自己的实际需要进行选取。

MySQL 8.0.25 默认支持的存储引擎如下:

在这里插入图片描述

1.6 存储层

所有的数据,数据库、表的定义,表的每一行的内容,索引,都是存在 文件系统 上,以 文件 的方式存 在的,并完成与存储引擎的交互。当然有些存储引擎比如InnoDB,也支持不使用文件系统直接管理裸设 备,但现代文件系统的实现使得这样做没有必要了。在文件系统之下,可以使用本地磁盘,可以使用 DAS、NAS、SAN等各种存储系统。

小结:

MySQL架构图本节开篇所示。下面为了熟悉SQL执行流程方便,我们可以简化如下:

在这里插入图片描述

简化为三层结构:

  1. 连接层:客户端和服务器端建立连接,客户端发送 SQL 至服务器端;
  2. SQL 层(服务层):对 SQL 语句进行查询处理;与数据库文件的存储方式无关;
  3. 存储引擎层:与数据库文件打交道,负责数据的存储和读取。

2. SQL执行流程

2.1 MySQL 中的 SQL 执行流程

在这里插入图片描述

MySQL的查询流程:

  1. 查询缓存 : Server 如果在查询缓存中发现了这条 SQL 语句,就会直接将结果返回给客户端;如果没 有,就进入到解析器阶段。需要说明的是,因为查询缓存往往效率不高,所以在 MySQL8.0 之后就抛弃 了这个功能。

大多数情况查询缓存就是个鸡肋,为什么呢 ?

SELECT employee_id,last_name FROM employees WHERE employee_id = 101;

查询缓存是提前把查询结果缓存起来,这样下次不需要执行就可以直接拿到结果。需要说明的是,在 MySQL 中的查询缓存,不是缓存查询计划,而是查询对应的结果。这就意味着查询匹配的 鲁棒性大大降低 ,只有 相同的查询操作才会命中查询缓存 。两个查询请求在任何字符上的不同(例如:空格、注释、 大小写),都会导致缓存不会命中。因此 MySQL 的 查询缓存命中率不高

同时,如果查询请求中包含某些系统函数、用户自定义变量和函数、一些系统表,如 mysql 、 information_schema、 performance_schema 数据库中的表,那这个请求就不会被缓存。以某些系统函数 举例,可能同样的函数的两次调用会产生不一样的结果,比如函数 NOW ,每次调用都会产生最新的当前 时间,如果在一个查询请求中调用了这个函数,那即使查询请求的文本信息都一样,那不同时间的两次 查询也应该得到不同的结果,如果在第一次查询时就缓存了,那第二次查询的时候直接使用第一次查询 的结果就是错误的!

此外,既然是缓存,那就有它 缓存失效的时候 。MySQL的缓存系统会监测涉及到的每张表,只要该表的 结构或者数据被修改,如对该表使用了 INSERT 、 UPDATE 、 DELETE 、 TRUNCATE TABLE 、 ALTER TABLE 、 DROP TABLEDROP DATABASE 语句,那使用该表的所有高速缓存查询都将变为无效并从高 速缓存中删除!对于更新压力大的数据库来说,查询缓存的命中率会非常低。

**解析器 :**在解析器中对 SQL 语句进行语法分析、语义分析。
在这里插入图片描述

分析器先做 “ 词法分析 ”。你输入的是由多个字符串和空格组成的一条 SQL 语句,MySQL 需要识别出里面 的字符串分别是什么,代表什么。 MySQL 从你输入的"select"这个关键字识别出来,这是一个查询语 句。它也要把字符串“T”识别成“表名 T”,把字符串“ID”识别成“列 ID”。

接着,要做 “ 语法分析 ”。根据词法分析的结果,语法分析器(比如:Bison)会根据语法规则,判断你输 入的这个 SQL 语句是否 满足 MySQL 语法
select department_id,job_id,avg(salary) from employees group by department_id; 如果SQL语句正确,则会生成一个这样的语法树:

在这里插入图片描述

**优化器 :**在优化器中会确定 SQL 语句的执行路径,比如是根据 全表检索 ,还是根据 索引检索 等。

举例:如下语句是执行两个表的 join:

select * from test1 join test2 using(ID)
where test1.name='zhangwei' and test2.name='mysql高级课程';
方案1:可以先从表  test1 里面取出  name='zhangwei'的记录的  ID 值,再根据  ID 值关联到表  test2,再判 断  test2 里面  name的值是否等于  'mysql高级课程'。
方案2:可以先从表  test2 里面取出  name='mysql高级课程' 的记录的  ID 值,再根据  ID 值关联到  test1, 再判断  test1 里面  name的值是否等于  zhangwei。
这两种执行方法的逻辑结果是一样的,但是执行的效率会有不同,而优化器的作用就是决定选择使用哪一个方案。优化 器阶段完成后,这个语句的执行方案就确定下来了,然后进入执行器阶段。
如果你还有一些疑问,比如优化器是怎么选择索引的,有没有可能选择错等。后面讲到索引我们再谈。

在查询优化器中,可以分为 逻辑查询 优化阶段和 物理查询 优化阶段。

执行器 : 截止到现在,还没有真正去读写真实的表,仅仅只是产出了一个执行计划。于是就进入了 执行器阶段

在这里插入图片描述

在执行之前需要判断该用户是否 具备权限 。如果没有,就会返回权限错误。如果具备权限,就执行 SQL 查询并返回结果。在 MySQL8.0 以下的版本,如果设置了查询缓存,这时会将查询结果进行缓存。

select * from test where id=1;

比如:表 test 中,ID 字段没有索引,那么执行器的执行流程是这样的:

调用  InnoDB 引擎接口取这个表的第一行,判断  ID 值是不是1,如果不是则跳过,如果是则将这行存在结果集中; 调用引擎接口取“下一行”,重复相同的判断逻辑,直到取到这个表的最后一行。
执行器将上述遍历过程中所有满足条件的行组成的记录集作为结果集返回给客户端。

至此,这个语句就执行完成了。对于有索引的表,执行的逻辑也差不多。

SQL 语句在 MySQL 中的流程是: SQL语句→查询缓存→解析器→优化器→执行器 。
在这里插入图片描述

2.2 MySQL8中SQL执行原理

最后:

“在这个最后的篇章中,我要表达我对每一位读者的感激之情。你们的关注和回复是我创作的动力源泉,我从你们身上吸取了无尽的灵感与勇气。我会将你们的鼓励留在心底,继续在其他的领域奋斗。感谢你们,我们总会在某个时刻再次相遇。”

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/975821.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于 Python Django 的校园互助平台(附源码,文档)

博主介绍:✌Java徐师兄、7年大厂程序员经历。全网粉丝13w、csdn博客专家、掘金/华为云等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇🏻 不…

【CVPR2024-工业异常检测】PromptAD:与只有正常样本的少样本异常检测的学习提示

代码链接 摘要 摘要写作总结: 1.提出 两个关键点 (视觉语言模型【模型】 少量工业异常检测【方向】) 2.想要解决的问题 3.针对上述问题,本文提出了一种什么【方法】的什么【应用方面】方法【模型名】 4.具体讲方法的步骤 5.实验…

WPF框架学习

WPF 可以想winfrom 那样在cs文件修改 属性数据; 为了前后端分离 而解耦合,有了M-V-VM模式 常见框架有 MVVMlight / Prism 等 ------------------------------------------------------------------------------------- 一、前提:有一定基…

网络运维学习笔记 017 HCIA-Datacom综合实验01

文章目录 综合实验1实验需求总部特性 分支8分支9 配置一、 基本配置(IP二层VLAN链路聚合)ACC_SWSW-S1SW-S2SW-Ser1SW-CoreSW8SW9DHCPISPGW 二、 单臂路由GW 三、 vlanifSW8SW9 四、 OSPFSW8SW9GW 五、 DHCPDHCPGW 六、 NAT缺省路由GW 七、 HTTPGW 综合实…

git,bash - 从一个远端git库只下载一个文件的方法

文章目录 git,bash - 从一个远端git库只下载一个文件的方法概述笔记写一个bash脚本来自动下载get_github_raw_file_from_url.shreanme_file.shfind_key_value.sh执行命令 END git,bash - 从一个远端git库只下载一个文件的方法 概述 github上有很多大佬上传了电子书库&#xf…

【废物研究生零基础刷算法】DFS与递归(一)典型题型

文章目录 跳台阶递归实现指数级枚举递归实现排列型枚举上面两题总结 递归实现组合型枚举P1036选数 跳台阶 思路: 如果 n 1,只有一种走法(走 1 级)。如果 n 2,有两种走法(11 或 2)。对于 n &g…

Java-01-源码篇-04集合-05-ConcurrentHashMap(1)

1.1 加载因子 加载因子(Load Factor)是用来决定什么时候需要扩容的一个参数。具体来说,加载因子 当前元素数量 / 桶的数量,当某个桶的元素个数超过了 桶的数量 加载因子 时,就会触发扩容。 我们都知道 ConcurrentHas…

AI赋能的未来城市:如何用智能化提升生活质量?

这会是我们憧憬的未来城市吗? 随着技术的不断进步和城市化进程的加速,现代城市面临着诸多挑战——交通拥堵、环境污染、能源消耗、人口老龄化等问题愈发突出。为了应对这些挑战,建设智慧城市已成为全球发展的重要趋势。在这一进程中&#xf…

DeepSeek各模型现有版本对比分析

文章目录 一、基础模型系列:V1 到 V3 的演进二、专用模型系列:推理与多模态三、版本选型与商业化趋势 DeepSeek作为最近特别火爆的模型,本文将对DeepSeek现有的主要版本进行对比分析,涵盖参数规模、训练数据、功能改进、应用场景和性能表现等…

【亲测有效】百度Ueditor富文本编辑器添加插入视频、视频不显示、和插入视频后二次编辑视频标签不显示,显示成img标签,二次保存视频被替换问题,解决方案

【亲测有效】项目使用百度Ueditor富文本编辑器上传视频相关操作问题 1.百度Ueditor富文本编辑器添加插入视频、视频不显示 2.百度Ueditor富文本编辑器插入视频后二次编辑视频标签不显示,在编辑器内显示成img标签,二次保存视频被替换问题 问题1&#xff1…

hot100_108. 将有序数组转换为二叉搜索树

hot100_108. 将有序数组转换为二叉搜索树 思路 给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 平衡 二叉搜索树。 示例 1: 输入:nums [-10,-3,0,5,9] 输出:[0,-3,9,-10,null,5] 解释&#…

RFID涉密载体柜:智能安全,全程守护,提供智能化的安全管控

行业背景 RFID智能载体柜(DW-G101)是一种便捷化的载体管控系统,它采用RFID技术实现信息化,可以大大提高载体管理的效率和准确性。 随着信息化的快速发展,涉密载体(如文件、U盘、光盘等)的管理…

【复习】计算机网络

网络模型 OSI 应用层:给应用程序提供统一的接口表示层:把数据转换成兼容另一个系统能识别的格式会话层:负责建立、管理、终止表示层实体之间的通信会话传输层:负责端到端的数据传输网络层:负责数据的路由、转发、分片…

多线程篇学习面试

多线程 1.乐观锁、CAS思想 java乐观锁机制: ​ 乐观锁体现的是悲观锁的反面。它是一种积极的思想,它总是认为数据是不会被修改的,所以是不会对数据上锁的。但是乐观锁在更新的时候会去判断数据是否被更新过。乐观锁的实现方案一般有两种&a…

Spring Boot 概要(官网文档解读)

Spring Boot 概述 Spring Boot 是一个高效构建 Spring 生产级应用的脚手架工具,它简化了基于 Spring 框架的开发过程。 Spring Boot 也是一个“构件组装门户”,何为构件组装门户呢?所谓的“构件组装门户”指的是一个对外提供的Web平台&#x…

计算机毕业设计SpringBoot+Vue.jst0甘肃非物质文化网站(源码+LW文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

匹配算法:向下就近原则,向下没有就向上

匹配算法&#xff1a;向下就近原则&#xff0c;向下没有就向上 实现方式一实现方式二总结 实现方式一 private static List<Integer> findMatches(List<Integer> sourceList, List<Integer> searchValues) {List<Integer> sortedList sourceList.stre…

ESP32S3:解决RWDT无法触发中断问题,二次开发者怎么才能使用内部RTC看门狗中断RWDT呢?

目录 基于ESP32S3:解决RWDT无法触发中断问题引言解决方案1. 查看报错日志2. 分析报错及一步一步找到解决方法3.小结我的源码基于ESP32S3:解决RWDT无法触发中断问题 引言 在嵌入式系统中,RWDT(看门狗定时器)是确保系统稳定性的重要组件。然而,在某些情况下,RWDT可能无法…

【GPU驱动】OpenGLES图形管线渲染机制

OpenGLES图形管线渲染机制 OpenGL/ES 的渲染管线也是一个典型的图形流水线&#xff08;Graphics Pipeline&#xff09;&#xff0c;包括多个阶段&#xff0c;每个阶段都负责对图形数据进行处理。管线的核心目标是将图形数据转换为最终的图像&#xff0c;这些图像可以显示在屏幕…

PHP post 数据丢失问题

max_input_vars是PHP配置选项之一&#xff0c;用于设置一个请求中允许的最大输入变量数。它指定了在处理POST请求或者通过URL传递的参数时&#xff0c;PHP脚本能够接收和处理的最大变量数量。 max_input_vars的默认值是1000&#xff0c;意味着一个请求中最多可以包含1000个输入…