毕业项目推荐:基于yolov8/yolo11的水稻叶片病害检测识别系统(python+卷积神经网络)

文章目录

  • 概要
  • 一、整体资源介绍
    • 技术要点
    • 功能展示:
      • 功能1 支持单张图片识别
      • 功能2 支持遍历文件夹识别
      • 功能3 支持识别视频文件
      • 功能4 支持摄像头识别
      • 功能5 支持结果文件导出(xls格式)
      • 功能6 支持切换检测到的目标查看
  • 二、数据集
  • 三、算法介绍
    • 1. YOLOv8 概述
      • 简介
    • 2. YOLO11 概述
      • YOLOv11:Ultralytics 最新目标检测模型
  • 🌟 四、模型训练步骤
  • 🌟 五、模型评估步骤
  • 🌟 六、训练结果
  • 🌟完整代码

往期经典回顾

项目项目
基于yolov8的车牌检测识别系统基于yolov8/yolov5的钢铁缺陷检测系统
基于yolov8的人脸表情检测识别系统基于深度学习的PCB板缺陷检测系统
基于yolov8/yolov5的茶叶等级检测系统基于yolov8/yolov5的农作物病虫害检测识别系统
基于yolov8/yolov5的交通标志检测识别系统基于yolov8/yolov5的课堂行为检测识别系统
基于yolov8/yolov5的海洋垃圾检测识别系统基于yolov8/yolov5的垃圾检测与分类系统
基于yolov8/yolov5的行人摔倒检测识别系统基于yolov8/yolov5的草莓病害检测识别系统
基于yolov8/yolov5/yolo11的动物检测识别系统

概要

本文将详细介绍如何以官方yolov8yolov11为主干,实现对水稻叶片病害的检测识别,且利用PyQt5设计了两种简约的系统UI界面。在界面中,您可以选择自己的视频文件、图片文件进行检测。此外,您还可以更换自己训练的主干模型,进行自己数据的检测。

引言
水稻作为全球重要粮食作物,其叶片病害的早期识别与防控直接关系粮食产量与农业经济收益。传统病害诊断依赖人工观察,存在效率低、主观误差大及难以应对复杂田间环境(如叶片重叠、病害特征模糊)等挑战。基于深度学习的水稻叶片病害检测系统通过高精度图像分析与多尺度特征提取,可自动识别锈病、稻瘟病等常见病害,并适配不同生长阶段的叶片形态,显著提升检测实时性与准确性。该系统为病害精准预警、科学施药及智能农田管理提供技术支持,对减少农药滥用、保障粮食安全及推动农业可持续发展具有重要应用价值。

我们的系统界面不仅外观优美,而且具备出色的检测精度和强大的功能。它支持多目标实时检测,并允许您自由选择感兴趣的检测目标。

yolov8界面如下
在这里插入图片描述

yolo11界面如下 在这里插入图片描述

关键词:水稻叶片病害检测;目标检测;深度学习;特征融合;注意力机制;卷积神经网络

在这里插入图片描述

一、整体资源介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8yolov8 + SE注意力机制yolo11yolo11 + SE注意力机制

数据集:
    网上下载的数据集,格式都已转好,可直接使用。

以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点

技术要点

  • OpenCV:主要用于实现各种图像处理和计算机视觉相关任务。
  • Python:采用这种编程语言,因其简洁易学且拥有大量丰富的资源和库支持。
  • 数据增强技术: 翻转、噪点、色域变换,mosaic等方式,提高模型的鲁棒性。

功能展示:

部分核心功能如下:

  • 功能1: 支持单张图片识别
  • 功能2: 支持遍历文件夹识别
  • 功能3: 支持识别视频文件
  • 功能4: 支持摄像头识别
  • 功能5: 支持结果文件导出(xls格式)
  • 功能6: 支持切换检测到的目标查看

功能1 支持单张图片识别

系统支持用户选择图片文件进行识别。通过点击图片选择按钮,用户可以选择需要检测的图片,并在界面上查看所有识别结果。该功能的界面展示如下图所示:
在这里插入图片描述

在这里插入图片描述

功能2 支持遍历文件夹识别

系统支持选择整个文件夹进行批量识别。用户选择文件夹后,系统会自动遍历其中的所有图片文件,并将识别结果实时更新显示在右下角的表格中。该功能的展示效果如下图所示:
在这里插入图片描述

在这里插入图片描述

功能3 支持识别视频文件

在许多情况下,我们需要识别视频中的目标。因此,系统设计了视频选择功能。用户点击视频按钮即可选择待检测的视频,系统将自动解析视频并逐帧识别多个目标,同时将识别结果记录在右下角的表格中。以下是该功能的展示效果:
在这里插入图片描述

在这里插入图片描述

功能4 支持摄像头识别

在许多场景下,我们需要通过摄像头实时识别目标。为此,系统提供了摄像头选择功能。用户点击摄像头按钮后,系统将自动调用摄像头并进行实时识别,识别结果会即时记录在右下角的表格中。
在这里插入图片描述

在这里插入图片描述

功能5 支持结果文件导出(xls格式)

本系统还添加了对识别结果的导出功能,方便后续查看,目前支持导出xls数据格式,功能展示如下:
在这里插入图片描述

在这里插入图片描述

功能6 支持切换检测到的目标查看

在这里插入图片描述

在这里插入图片描述

二、数据集

提供全面、结构化的数据集,它不仅包含了丰富的类别,而且已经细致地划分为训练集、验证集和测试集,以满足不同阶段的模型训练需求。而且数据集的格式,可直接支持YOLO训练,无需额外的格式转换工作。

该数据集包含5932幅图像,包括白叶枯病、稻瘟病、褐斑病和Tungro四种水稻叶部病害

部分数据样式如下:

在这里插入图片描述

三、算法介绍

1. YOLOv8 概述

简介

YOLOv8算法的核心特性和改进如下:

  • 全新SOTA模型
    YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X五种尺度的模型,以满足不同场景的需求。
  • Backbone
    骨干网络和Neck部分参考了YOLOv7 ELAN的设计思想。
    YOLOv5的C3结构替换为梯度流更丰富的C2f结构
    针对不同尺度的模型,调整了通道数,使其更适配各种任务需求。
    在这里插入图片描述
    网络结构如下:
    在这里插入图片描述

相比之前版本,YOLOv8对模型结构进行了精心微调,不再是“无脑”地将同一套参数应用于所有模型,从而大幅提升了模型性能。这种优化使得不同尺度的模型在面对多种场景时都能更好地适应。

然而,新引入的C2f模块虽然增强了梯度流,但其内部的Split等操作对特定硬件的部署可能不如之前的版本友好。在某些场景中,C2f模块的这些特性可能会影响模型的部署效率

2. YOLO11 概述

YOLOv11:Ultralytics 最新目标检测模型

YOLOv11 是 Ultralytics 公司在 2024 年推出的 YOLO 系列目标检测模型的最新版本。以下是对 YOLOv11 的具体介绍:

主要特点

  1. 增强的特征提取

    • 采用改进的骨干和颈部架构,如在主干网络中引入了 c2psa 组件,并将 c2f 升级为 c3k2
    • c3k 允许用户自定义卷积模块的尺寸,提升了灵活性。
    • c2psa 通过整合 psa(位置敏感注意力机制)来增强模型的特征提取效能。
    • 颈部网络采用了 pan 架构,并集成了 c3k2 单元,有助于从多个尺度整合特征,并优化特征传递的效率。
  2. 针对效率和速度优化

    • 精细的架构设计和优化的训练流程,在保持准确性和性能最佳平衡的同时,提供更快的处理速度。
    • 相比 YOLOv10,YOLOv11 的延迟降低了 25%-40%,能够达到每秒处理 60 帧 的速度,是目前最快的目标检测模型之一。
  3. 更少的参数,更高的准确度

    • YOLOv11mCOCO 数据集上实现了比 YOLOv8m 更高的 mAP,参数减少了 22%,提高了计算效率,同时不牺牲准确度。
  4. 跨环境的适应性

    • 可无缝部署在 边缘设备云平台 和配备 NVIDIA GPU 的系统上,确保最大的灵活性。
  5. 支持广泛的任务范围

    • 支持多种计算机视觉任务,包括 目标检测实例分割图像分类姿态估计定向目标检测(OBB)

架构改进

  1. 主干网络

    • 引入了 c2psa 组件,并将 c2f 升级为 c3k2
    • c3k 支持用户自定义卷积模块尺寸,增强灵活性。
    • c2psa 整合了 psa(位置敏感注意力机制),提升特征提取效能。
  2. 颈部网络

    • 采用 pan 架构,并集成了 c3k2 单元,帮助从多个尺度整合特征并优化特征传递效率。
  3. 头部网络

    • YOLOv11 的检测头设计与 YOLOv8 大致相似。
    • 在分类(cls)分支中,采用了 深度可分离卷积 来增强性能。

性能优势

  1. 精度提升

    • COCO 数据集上取得了显著的精度提升:
      • YOLOv11x 模型的 mAP 得分高达 54.7%
      • 最小的 YOLOv11n 模型也能达到 39.5%mAP 得分
    • 与前代模型相比,精度有明显进步。
  2. 速度更快

    • 能够满足实时目标检测需求

🌟 四、模型训练步骤

  1. 使用pycharm打开代码,找到train.py打开,示例截图如下:
    在这里插入图片描述

  2. 修改 model_yaml 的值,根据自己的实际情况修改,想要训练 yolov8s模型 就 修改为 model_yaml = yaml_yolov8s, 训练 添加SE注意力机制的模型就修改为 model_yaml = yaml_yolov8_SE

  3. 修改data_path 数据集路径,我这里默认指定的是traindata.yaml 文件,如果训练我提供的数据,可以不用改

  4. 修改 model.train()中的参数,按照自己的需求和电脑硬件的情况更改

    # 文档中对参数有详细的说明
    model.train(data=data_path,             # 数据集
                imgsz=640,                  # 训练图片大小
                epochs=200,                 # 训练的轮次
                batch=2,                    # 训练batch
                workers=0,                  # 加载数据线程数
                device='0',                 # 使用显卡
                optimizer='SGD',            # 优化器
                project='runs/train',       # 模型保存路径
                name=name,                  # 模型保存命名
                )
    
  5. 修改traindata.yaml文件, 打开 traindata.yaml 文件,如下所示:
    在这里插入图片描述
    在这里,只需修改 path 的值,其他的都不用改动(仔细看上面的黄色字体),我提供的数据集默认都是到 yolo 文件夹,设置到 yolo 这一级即可,修改完后,返回 train.py 中,执行train.py

  6. 打开 train.py ,右键执行。
    在这里插入图片描述

  7. 出现如下类似的界面代表开始训练了
    在这里插入图片描述

  8. 训练完后的模型保存在runs/train文件夹下
    在这里插入图片描述


🌟 五、模型评估步骤

  1. 打开val.py文件,如下图所示:
    在这里插入图片描述

  2. 修改 model_pt 的值,是自己想要评估的模型路径

  3. 修改 data_path ,根据自己的实际情况修改,具体如何修改,查看上方模型训练中的修改步骤

  4. 修改 model.val()中的参数,按照自己的需求和电脑硬件的情况更改

    model.val(data=data_path,           # 数据集路径
              imgsz=300,                # 图片大小,要和训练时一样
              batch=4,                  # batch
              workers=0,                # 加载数据线程数
              conf=0.001,               # 设置检测的最小置信度阈值。置信度低于此阈值的检测将被丢弃。
              iou=0.6,                  # 设置非最大抑制 (NMS) 的交叉重叠 (IoU) 阈值。有助于减少重复检测。
              device='0',               # 使用显卡
              project='runs/val',       # 保存路径
              name='exp',               # 保存命名
              )
    
  5. 修改完后,即可执行程序,出现如下截图,代表成功(下图是示例,具体以自己的实际项目为准。)
    在这里插入图片描述

  6. 评估后的文件全部保存在在 runs/val/exp... 文件夹下
    在这里插入图片描述


🌟 六、训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述

   如果大家对于上面生成的这些内容(confusion_matrix.png、results.png等)不清楚是什么意思,可以在我的知识库里查看这些指标的具体含义,示例截图如下:

在这里插入图片描述

🌟完整代码

   如果您希望获取博文中提到的所有实现相关的完整资源文件(包括测试图片、视频、Python脚本、UI文件、训练数据集、训练代码、界面代码等),这些文件已被全部打包。以下是完整资源包的截图

在这里插入图片描述

您可以通过下方演示视频视频简介部分进行获取:

演示视频:
基于深度学习的水稻叶片病害检测识别系统(v8)

基于深度学习的水稻叶片病害检测识别系统(v11)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/975338.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DeepSeek写贪吃蛇手机小游戏

DeepSeek写贪吃蛇手机小游戏 提问 根据提的要求,让DeepSeek整理的需求,进行提问,内容如下: 请生成一个包含以下功能的可运行移动端贪吃蛇H5文件: 要求 蛇和食物红点要清晰,不超过屏幕外 下方有暂停和重新…

C/C++跳动的爱心

系列文章 序号直达链接1C/C李峋同款跳动的爱心2C/C跳动的爱心3C/C经典爱心4C/C满屏飘字5C/C大雪纷飞6C/C炫酷烟花7C/C黑客帝国同款字母雨8C/C樱花树9C/C奥特曼10C/C精美圣诞树11C/C俄罗斯方块小游戏12C/C贪吃蛇小游戏13C/C孤单又灿烂的神14C/C闪烁的爱心15C/C哆啦A梦16C/C简单…

深入理解 JSP 与 Servlet:原理、交互及实战应用

一、引言 在 Java Web 开发领域,JSP(JavaServer Pages)和 Servlet 是两个至关重要的技术,它们共同构成了动态网页开发的基础。Servlet 作为服务器端的 Java 程序,负责处理客户端请求并生成响应;而 JSP 则是一种简化的 Servlet 开发方式,允许开发者在 HTML 页面中嵌入 J…

百度搜索,能否将DeepSeek变成“内功”?

最近,所有的云平台和主流APP都在努力接入DeepSeek。其中,搜索类APP与搜索引擎更是“战况激烈”。那么问题来了,接入DeepSeek已经变成了标准配置,到底应该如何做出差异化?接入DeepSeek这件事能不能实现11大于2的效果&am…

小智机器人CMakeLists编译文件解析

编译完成后,成功烧录! 这段代码是一个CMake脚本,用于配置和构建一个嵌入式项目,特别是针对ESP32系列芯片的项目。CMake是一个跨平台的构建系统,用于管理项目的编译过程。 set(SOURCES "audio_codecs/audio_code…

保姆级教程 | Office-Word中图目录制作及不显示图注引文的方法

背景 由于毕业论文的格式修改需要(没错,我终于要拿下PhD了。差不多四个月没更新,主要是①根据处理完的数据完成小论文撰写;②找工作...③完成学位论文的撰写。因而对建模和数据处理的需求不高,对有些时隔久远的博文具…

SVN把英文换中文

原文链接:SVN设置成中文版本 都是英文,换中文 Tortoise SVN 安装汉化教程(乌龟SVN) https://pan.quark.cn/s/cb6f2eee3f90 下载中文包

负载均衡集群( LVS 相关原理与集群构建 )

目录 1、LVS 相关原理 1.1、LVS集群的体系结构以及特点 1.1.1 LVS简介 1.1.2 LVS体系结构 1.1.3 LVS相关术语 1.1.4 LVS工作模式 1.1.5 LVS调度算法 1.2 LVS-DR集群介绍 1.2.1 LVS-DR模式工作原理 1.2.2 LVS-DR模式应用特点 1.2.3 LVS-DR模式ARP抑制 1.3 LVS – NA…

深度解析:使用 Headless 模式 ChromeDriver 进行无界面浏览器操作

一、问题背景(传统爬虫的痛点) 数据采集是现代网络爬虫技术的核心任务之一。然而,传统爬虫面临多重挑战,主要包括: 反爬机制:许多网站通过检测请求头、IP地址、Cookie等信息识别爬虫,进而限制…

[Android]APP自启动

APP添加自启动权限&#xff0c;重启设备后自动打开APP。 1.AndroidManifest.xml <?xml version"1.0" encoding"utf-8"?> <manifest xmlns:android"http://schemas.android.com/apk/res/android"xmlns:tools"http://schemas.an…

Kubernetes 使用 Kube-Prometheus 构建指标监控 +飞书告警

1 介绍 Prometheus Operator 为 Kubernetes 提供了对 Prometheus 机器相关监控组件的本地部署和管理方案&#xff0c;该项目的目的是为了简化和自动化基于 Prometheus 的监控栈配置&#xff0c;主要包括以下几个功能&#xff1a; Kubernetes 自定义资源&#xff1a;使用 Kube…

清华大学第五弹:《DeepSeek与AI幻觉》

作者&#xff1a;清华大学新闻与传播学院新媒体研究中心、人工智能学院&#xff08;新媒沈阳团队&#xff09; 时间&#xff1a;2025年2月 完整版下载地址&#xff1a;夸克网盘分享 一、AI幻觉的定义与分类 定义 学术定义&#xff1a;模型生成与事实不符、逻辑断裂或脱离上下…

鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目

摘要&#xff1a;本文整理自鹰角大数据开发工程师&#xff0c;Apache Hudi Contributor 朱正军老师在 Flink Forward Asia 2024 生产实践&#xff08;二&#xff09;专场中的分享。主要分为以下四个部分&#xff1a; 一、鹰角数据平台架构 二、数据湖选型 三、湖仓一体建设 四、…

deepin 下安装nvm(npm+node)

1、切换root用户&#xff0c;并更新系统 sudo su sudo apt update && apt upgrade -y 期间所有提示选择yes即可 2、切换回自己用户 su - fchsoft 3、安装git sudo apt install git -y 4、安装wget sudo apt install wget -y 5、安装nvm 创建文件夹 mkdir -p…

【JavaEE进阶】MyBatis通过注解实现增删改查

目录 &#x1f343;前言 &#x1f340;打印日志 &#x1f334;传递参数 &#x1f38b;增(Insert) &#x1f6a9;返回主键 &#x1f384;删(Delete) &#x1f332;改(Update) &#x1f333;查(Select) &#x1f6a9;起别名 &#x1f6a9;结果映射 &#x1f6a9;开启驼…

三、数据治理应用开发整体架构

1.数据治理应用开发整体架构概览 该架构图描绘了一个全面的数据治理应用开发平台&#xff0c;旨在为用户提供从数据调研、治理构建、资产管理到应用开发、运维监控等全生命周期的一体化服务。整体架构呈现出模块化、松耦合的特点&#xff0c;并强调低代码开发和业务中台能力。 …

C#项目05-猜数字多线程

本项目利用多线程&#xff0c;通过点击按钮猜数字&#xff0c; 知识点 线程 基本概念 进程:一组资源&#xff0c;构成一个正在运行的程序&#xff0c;这些资源包括地址空间、文件句柄以及程序启动需要的其他东西的载体。 线程:体现一个程序的真实执行情况&#xff0c; 线…

XiaoMi Mi5(gemini) 刷入Ubuntu Touch 16.04——安卓手机刷入Linux

最近在研究个人用的小服务器&#xff0c;期间也搞了一台某讯的盒子&#xff0c;s905的芯片&#xff0c;28G&#xff0c;刷入了Armbian&#xff0c;在自己本地当linux服务器用用挺方便的&#xff0c;但总感觉性能不太够。 然后灵机一动&#xff0c;手上还有几台旧的安卓手机&am…

Spring Security+JWT+Redis实现项目级前后端分离认证授权

1. 整体概述 权限管理包括用户身份认证和授权两部分&#xff0c;简称认证授权。对于需要访问控制到资源&#xff0c;用户首先经过身份认证&#xff0c;认证通过后用户具有该资源的访问权限方可访问。 1.1 认证概述 认证是确认用户身份的过程&#xff0c;确保用户是谁。 1.1.1 …

【Linux】:应用层协议 HTTP (超文本传输协议)

&#x1f4c3;个人主页&#xff1a;island1314 &#x1f525;个人专栏&#xff1a;Linux—登神长阶 ⛺️ 欢迎关注&#xff1a;&#x1f44d;点赞 &#x1f442;&#x1f3fd;留言 &#x1f60d;收藏 &#x1f49e; &#x1f49e; &#x1f49e; 1. HTTP -- 概述 虽然我们说…