蓝桥杯 Java B 组之背包问题、最长递增子序列(LIS)

Day 4:背包问题、最长递增子序列(LIS)


📖 一、动态规划(Dynamic Programming)简介

动态规划是一种通过将复杂问题分解成更小的子问题来解决问题的算法设计思想。它主要用于解决具有最优子结构重叠子问题的问题。

  • 最优子结构:问题的最优解可以通过子问题的最优解组合得到。
  • 重叠子问题:子问题的解可以在多次计算中复用,避免了重复计算。

在使用动态规划时,通常会构造一个“状态转移方程”,该方程描述了如何通过子问题的解来得到当前问题的解。


📖 二、背包问题

01背包问题(0/1 Knapsack)

问题描述: 给定一个背包和若干个物品,每个物品有一个重量和价值。求背包能够承载的最大价值。

  • 背包容量:W
  • 物品数目:n
  • 每个物品的重量和价值分别为 w[i]v[i]
  • 我们需要选择一些物品放入背包,使得背包的总价值最大。

思路与分析

  1. 状态定义
    • 定义 dp[i][w] 为前 i 个物品中,放入背包容量为 w 时能够达到的最大价值。
  2. 状态转移
    • 如果不选择第 i 个物品:dp[i][w] = dp[i-1][w]
    • 如果选择第 i 个物品:dp[i][w] = dp[i-1][w - weight[i]] + value[i],前提是 w >= weight[i]
  3. 最终的答案为 dp[n][W]

代码实现(01背包问题)

public class Knapsack {
    public int knapsack(int W, int[] weights, int[] values, int n) {
        // dp[i][w]表示前i个物品,背包容量为w时的最大价值
        int[][] dp = new int[n + 1][W + 1];
        
        // 填表,i表示物品数量,w表示背包容量
        for (int i = 1; i <= n; i++) {
            for (int w = 1; w <= W; w++) {
                // 不选择第i个物品
                dp[i][w] = dp[i - 1][w];
                
                // 选择第i个物品,前提是背包容量足够
                if (w >= weights[i - 1]) {
                    dp[i][w] = Math.max(dp[i][w], dp[i - 1][w - weights[i - 1]] + values[i - 1]);
                }
            }
        }
        
        return dp[n][W];
    }

    public static void main(String[] args) {
        Knapsack knapsack = new Knapsack();
        int[] weights = {2, 3, 4, 5}; // 物品的重量
        int[] values = {3, 4, 5, 6};  // 物品的价值
        int W = 5;  // 背包容量
        int n = weights.length; // 物品数量
        
        int maxValue = knapsack.knapsack(W, weights, values, n);
        System.out.println("最大价值: " + maxValue); // 输出 7
    }
}

代码讲解

  1. 二维DP数组dp[i][w] 表示前 i 个物品,背包容量为 w 时能达到的最大价值。
  2. 状态转移:通过选择或不选择第 i 个物品来更新 dp[i][w]
  3. 时间复杂度:O(n * W),其中 n 是物品的数量,W 是背包容量。

📖 三、最长递增子序列(LIS)

问题描述: 给定一个整数数组,求该数组的最长递增子序列(LIS)的长度。

  • 数组的递增子序列是数组中的一个子序列,并且这个子序列中的元素是严格递增的。
  • 我们要求的是最长递增子序列的长度。

思路与分析

  1. 状态定义
    • 定义 dp[i] 表示以 nums[i] 结尾的最长递增子序列的长度。
  2. 状态转移
    • 对于每个元素 nums[i],检查它之前的所有元素 nums[j],如果 nums[i] > nums[j],则更新 dp[i]dp[j] + 1
  3. 最终的答案是 dp 数组中的最大值。

代码实现(LIS)

public class LIS {
    public int lengthOfLIS(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }

        int n = nums.length;
        int[] dp = new int[n];
        // 初始化dp数组,每个位置的初始值都是1
        for (int i = 0; i < n; i++) {
            dp[i] = 1;
        }

        // 枚举每个元素,检查之前的元素
        for (int i = 1; i < n; i++) {
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);
                }
            }
        }

        // 找出dp数组的最大值,即最长递增子序列的长度
        int maxLength = 0;
        for (int length : dp) {
            maxLength = Math.max(maxLength, length);
        }
        
        return maxLength;
    }

    public static void main(String[] args) {
        LIS lis = new LIS();
        int[] nums = {10, 9, 2, 5, 3, 7, 101, 18};
        System.out.println("最长递增子序列的长度: " + lis.lengthOfLIS(nums)); // 输出 4
    }
}

代码讲解

  1. 动态规划数组dp[i] 表示以 nums[i] 为结尾的最长递增子序列的长度。
  2. 双重循环:对于每个元素 nums[i],检查它之前的元素 nums[j],如果满足递增条件,更新 dp[i]
  3. 最终结果:在 dp 数组中找出最大的值即为最长递增子序列的长度。

时间复杂度

  • O(n^2),因为每个元素都需要与之前的所有元素比较。

📖 四、总结

背包问题常考点

  1. 01背包问题:经典的动态规划问题,重点是理解状态转移方程,通过选择与不选择物品来更新背包容量的最大价值。
  2. 背包问题优化:可以使用滚动数组优化空间复杂度,将 dp 数组从二维优化为一维。

最长递增子序列(LIS)常考点

  1. 状态转移:LIS 是一个非常经典的动态规划问题。每个 dp[i] 由之前的所有 dp[j] 推导出。
  2. 优化空间复杂度:O(n^2) 的时间复杂度较高,可以通过二分查找等优化方法将时间复杂度降到 O(n log n)。

常见易错点

  1. 背包问题:忘记更新 dp[i][w],或者状态转移写反了,导致背包容量或物品数目错误。
  2. LIS问题:对比 nums[i] > nums[j] 时,处理不当可能导致未能正确记录递增关系。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/973707.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

业务流程中的流程管理

流程管理是业务流程管理中至关重要的一环。它专注于规划、组织、指导、控制和优化组织内的各项业务流程&#xff0c;以提高效率、降低成本、提升质量和增强客户满意度。简单来说&#xff0c;流程管理就是管理你的业务是如何完成工作的。 下面将从几个方面详细讲解业务流程中的…

2025年股指期货和股指期权合约交割的通知!

锦鲤三三每日分享期权知识&#xff0c;帮助期权新手及时有效地掌握即市趋势与新资讯&#xff01; 2025年股指期货和股指期权合约交割的通知&#xff01; 根据中国金融期货交易所规则及相关规定&#xff0c;以下股指期货和股指期权合约于指定日期进行交割&#xff0c;现将各合…

播放器系列1——总概述

播放器核心架构 模块解释 文件读取 读取视频文件、读取网络文件、读取音频文件&#xff0c;大概分为这三种&#xff0c;目前代码中仅实现了读取视频文件播放&#xff0c;也就是当没有video数据的时候播放器不可使用。 解复用 容器指的是多媒体文件中的封装格式&#xff0c;…

MacOS下使用Ollama本地构建DeepSeek并使用本地Dify构建AI应用

目录 1 大白话说一下文章内容2 作者的电脑配置3 DeepSeek的本地部署3.1 Ollamal的下载和安装3.2 选择合适的deepseek模型3.3 安转deepseek 4 DifyDeepSeek构建Al应用4.1 Dify的安装4.1.1 前置条件4.1.2 拉取代码4.1.3 启动Dify 4.2 Dify控制页面4.3 使用Dify实现个“文章标题生…

神经网络八股(三)

1.什么是梯度消失和梯度爆炸 梯度消失是指梯度在反向传播的过程中逐渐变小&#xff0c;最终趋近于零&#xff0c;这会导致靠前层的神经网络层权重参数更新缓慢&#xff0c;甚至不更新&#xff0c;学习不到有用的特征。 梯度爆炸是指梯度在方向传播过程中逐渐变大&#xff0c;…

第3章 3.3日志 .NET Core日志 NLog使用教程

3.3.1 .NET Core日志基本使用 书中介绍了把日志输出到控制台的使用方式&#xff1a; 安装 Microsoft.Extensions.Logging 和 Microsoft.Extensions.Logging.Console 日志记录代码&#xff1a; using Microsoft.Extensions.DependencyInjection; using Microsoft.Extensions.…

Springboot的jak安装与配置教程

目录 Windows系统 macOS系统 Linux系统 Windows系统 下载JDK&#xff1a; 访问Oracle官网或其他JDK提供商网站&#xff0c;下载适合Windows系统的JDK版本。网站地址&#xff1a;Oracle 甲骨文中国 | 云应用和云平台点击进入下滑&#xff0c;点击进入下载根据自己的系统选择&…

Vue2是如何利用Object.defineProperty实现数据的双向绑定?

我们之前说道过Object.defineProperty方法有一关键特性&#xff0c;就是数据劫持&#xff0c;通过get/set 拦截属性的读取和修改操作。Vue主要是通过数据劫持结合发布-订阅模式来实现的&#xff0c;利用Object.defineProperty来劫持各个属性的setter和getter&#xff0c;在数据…

Transformer解析——(四)Decoder

本系列已完结&#xff0c;全部文章地址为&#xff1a; Transformer解析——&#xff08;一&#xff09;概述-CSDN博客 Transformer解析——&#xff08;二&#xff09;Attention注意力机制-CSDN博客 Transformer解析——&#xff08;三&#xff09;Encoder-CSDN博客 Transforme…

Vue前端开发-Vant之Layout组件

在Vant 中&#xff0c;Layout组件用于元素的响应式布局&#xff0c;分别由van-row和van-col两个组件来实现&#xff0c;前者表示行&#xff0c;后者被包裹在van-row组件中&#xff0c;表示列&#xff0c;共有24列栅格组成&#xff0c;在van-col组件中&#xff0c;span属性表示所…

【YOLOv8】损失函数

学习视频&#xff1a; yolov8 | 损失函数 之 5、类别损失_哔哩哔哩_bilibili yolov8 | 损失函数 之 6、定位损失 CIoU DFL_哔哩哔哩_bilibili 2.13、yolov8损失函数_哔哩哔哩_bilibili YOLOv8 的损失函数由类别损失和定位损失构成 类别损失&#xff1a;BCE Loss 定位损失…

Mac系统下使用Docker快速部署MaxKB:打造本地知识库问答系统

随着大语言模型的广泛应用&#xff0c;知识库问答系统逐渐成为提升工作效率和个人学习的有力工具。MaxKB是一款基于LLM&#xff08;Large Language Model&#xff09;大语言模型的知识库问答系统&#xff0c;支持多模型对接、文档上传和自动爬取等功能。本文将详细介绍如何在Ma…

(Arxiv-2025)ImageRAG:用于参考引导图像生成的动态图像检索

ImageRAG&#xff1a;用于参考引导图像生成的动态图像检索 paper是Tel Aviv University发布在Arxiv 2025的工作 paper title:ImageRAG: Dynamic Image Retrieval for Reference-Guided Image Generation Code:链接 图 1&#xff1a;使用参考图像扩展图像生成模型的生成能力。 在…

企业知识管理平台重构数字时代知识体系与智能服务网络

内容概要 现代企业知识管理平台的演进呈现出全生命周期管理与智能服务网络构建的双重特征。通过四库体系&#xff08;知识采集库、加工库、应用库、评估库&#xff09;的协同运作&#xff0c;该系统实现了从知识沉淀、结构化处理到价值释放的完整闭环。其中&#xff0c;知识图…

高级推理的多样化推理与验证

25年2月来自波士顿大学、NotBadMath.AI、谷歌、哥伦比亚大学、MIT、Intuit公司和斯坦福大学的论文“Diverse Inference and Verification for Advanced Reasoning”。 OpenAI o1、o3 和 DeepSeek R1 等推理 LLM 在数学和编码方面取得重大进展&#xff0c;但仍发现 IMO 组合问题…

23.1 WebBrowser控件

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 WebBrowser控件类似于IE浏览器的文档界面&#xff08;事实上IE也是使用的这个控件&#xff09;&#xff0c;它提供了显示网页及支持…

Django-Vue 学习-VUE

主组件中有多个Vue组件 是指在Vue.js框架中&#xff0c;主组件是一个父组件&#xff0c;它包含了多个子组件&#xff08;Vue组件&#xff09;。这种组件嵌套的方式可以用于构建复杂的前端应用程序&#xff0c;通过拆分功能和视图&#xff0c;使代码更加模块化、可复用和易于维…

计算机网络安全之一:网络安全概述

1.1 网络安全的内涵 随着计算机和网络技术的迅猛发展和广泛普及&#xff0c;越来越多的企业将经营的各种业务建立在Internet/Intranet环境中。于是&#xff0c;支持E-mail、文件共享、即时消息传送的消息和协作服务器成为当今商业社会中的极重要的IT基础设施。然而&#xff0…

AI学习指南DeepSeek篇(6)-DeepSeek论文介绍

1. DeepSeek LLM: Scaling Open-Source Language Models with Longtermism 发布时间: 2024 年 1 月 5 日 主要内容: 基于 Transformer 架构,采用分组查询注意力(GQA)优化推理成本。 支持多步学习率调度器,提升训练效率。 在预训练和对齐(监督微调与 DPO)方面进行了创新…

刺客信条 枭雄 画质设置以及【锁帧60帧】的办法

刺客信条 枭雄 锁帧60帧的办法 画质设置帧率锁60帧办法 画质设置 关爱老电脑和GPU&#xff0c;适当设置一下画质 我们设置画面的时候&#xff0c;可以看游戏右上角的显存占用&#xff0c;进而观察自己这样设置&#xff0c;GPU的显存够不够&#xff1a; 环境质量&#xff1a;超…