OpenCV机器学习(6)朴素贝叶斯分类器(Naive Bayes Classifier)cv::ml::NormalBayesClassifier的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::ml::NormalBayesClassifier 是 OpenCV 机器学习模块中的一部分,用于实现朴素贝叶斯分类器(Naive Bayes Classifier)。这种分类器基于贝叶斯定理,并假设特征之间相互独立(即“朴素”的假设),尽管这个假设在实际应用中往往不成立,但朴素贝叶斯分类器在很多情况下仍然表现良好,特别是在文本分类、垃圾邮件过滤等领域。

主要特点

  • 简单且快速:训练和预测过程都非常高效。
  • 适用于多分类问题:可以处理两个或更多类别的分类任务。
  • 基于概率的决策:为每个类别计算后验概率,并选择具有最高概率的类别作为预测结果。

常用成员函数

以下是一些常用的 cv::ml::NormalBayesClassifier 类成员函数:

  • 创建模型实例
    • Ptr create():创建一个新的 NormalBayesClassifier 模型实例。
  • 训练模型
    • train(const Ptr& trainData, int flags=0):使用提供的训练数据进行训练。
    • train(InputArray samples, int layout, InputArray responses):另一种形式的训练函数,直接接受样本和响应矩阵作为输入。
  • 预测
    • predict(InputArray samples, OutputArray results=noArray(), int flags=0) const:对新样本进行预测,并返回每个样本的类别标签或概率值(取决于标志)。
  • 保存与加载模型
    • save(const String& filename):将模型保存到文件。
    • load(const String& filename):从文件加载模型。

使用步骤

  • 准备数据:准备好你的训练数据集,包括特征向量及其对应的标签。
  • 初始化 NormalBayesClassifier 模型:使用 cv::ml::NormalBayesClassifier::create() 创建一个新的 NormalBayesClassifier 模型实例。
  • 训练模型:调用 train() 方法,传入你的训练数据来进行模型训练。
  • 评估模型:可以通过交叉验证或者在独立的测试集上评估模型性能。
  • 预测新数据:使用训练好的模型对新的未见过的数据进行预测,并获取其所属类别的概率分布。

代码示例

#include <iostream>
#include <opencv2/ml.hpp>
#include <opencv2/opencv.hpp>

using namespace cv;
using namespace cv::ml;
using namespace std;

int main()
{
    // 准备训练数据
    Mat samples = ( Mat_< float >( 4, 2 ) << 0.5, 1.0, 1.0, 1.5, 2.0, 0.5, 1.5, 0.0 );

    Mat responses = ( Mat_< int >( 4, 1 ) << 0, 0, 1, 1 );

    // 确保数据和标签是浮点数类型
    if ( samples.type() != CV_32F )
    {
        samples.convertTo( samples, CV_32F );
    }
    if ( responses.type() != CV_32S )
    {  // 注意:对于分类,通常使用整数类型标签
        responses.convertTo( responses, CV_32S );
    }

    // 创建并配置 NormalBayesClassifier 模型
    Ptr< NormalBayesClassifier > nb_model = NormalBayesClassifier::create();

    // 训练模型
    bool ok = nb_model->train( samples, ROW_SAMPLE, responses );
    if ( ok )
    {
        // 保存模型
        nb_model->save( "nb_model.yml" );

        // 对新样本进行预测
        Mat sample     = ( Mat_< float >( 1, 2 ) << 1.6, 0.7 );
        float response = nb_model->predict( sample );

        cout << "The predicted response for the sample is: " << response << endl;
    }
    else
    {
        cerr << "Training failed!" << endl;
    }

    return 0;
}

运行结果

The predicted response for the sample is: 1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/973410.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何利用国内镜像从huggingface上下载项目

1、利用镜像快速下载项目 在huggingface上下载模型时速度太慢&#xff0c;可以用下面的方法 pip install -U huggingface_hub pip install huggingface-cliexport HF_ENDPOINThttps://hf-mirror.comhuggingface-cli download --resume-download shenzhi-wang/Llama3-8B-Chine…

Http升级为Https - 开发/测试服环境

1.应用场景 主要用于开发/测试服环境将http升级为https, 防止前端web(浏览器)出现Mixed Content报错; 2.学习/操作 1.文档阅读 deepseek 问答; 2.整理输出 报错信息: Mixed Content: The page at <URL> was loaded over HTTPS, but requested an insecure XMLHttpRequ…

网页制作01-html,css,javascript初认识のhtml的基本标记

一、 Html简介 英文全称是 hyper text markup language,超文本标记语言,是全球广域网上描述网页内容和外观的标准. Html作为一款标记语言,本身不能显示在浏览器中.标记语言经过浏览器的解释和编译,才能正确地反映html标记语言的内容. 1.html 的基本标记 1&#xff09;头部标…

分布式 IO 模块:水力发电设备高效控制的关键

在能源领域不断追求高效与可持续发展的今天&#xff0c;水力发电作为一种清洁、可再生的能源形式&#xff0c;备受关注。而要实现水力发电设备的高效运行&#xff0c;精准的控制技术至关重要。分布式 IO 模块&#xff0c;正悄然成为水力发电设备高效控制的核心力量。 传统挑战 …

【前端框架】vue2和vue3的区别详细介绍

Vue 3 作为 Vue 2 的迭代版本&#xff0c;在性能、语法、架构设计等多个维度均有显著的变革与优化。以下详细剖析二者的区别&#xff1a; 响应式系统 Vue 2 实现原理&#xff1a;基于 Object.defineProperty() 方法实现响应式。当一个 Vue 实例创建时&#xff0c;Vue 会遍历…

使用linux脚本部署discuz博客(详细注释版)

使用脚本部署一个discuzz项目 1.显示当前环境状态 防火墙状态 selinux状态 httpd状态 由上可知&#xff0c;虚拟机已处于最初始状态 2.脚本编写 #!/bin/bash #这是一个通过脚本来部署discuzz博客 firewalld关闭 systemctl stop firewalld if [ $? -eq 0 ];then echo "…

【代码审计】-Tenda AC 18 v15.03.05.05 /goform接口文档漏洞挖掘

路由器&#xff1a;Tenda AC 18 v15.03.05.05 固件下载地址&#xff1a;https://www.tenda.com.cn/material?keywordac18 1./goform/SetSpeedWan 接口文档&#xff1a; formSetSpeedWan函数中speed_di参数缓冲区溢出漏洞&#xff1a; 使用 binwalk -eM 解包固件&#xff0c…

正式页面开发-登录注册页面

整体路由设计&#xff1a; 登录和注册的切换是切换组件或者是切换内容&#xff08;v-if和 v-else)&#xff0c;因为点击两个之间路径是没有变化的。也就是登录和注册共用同一个路由。登录是独立的一级路由。登录之后进到首页&#xff0c;有三个大模块&#xff1a;文章分类&…

Unity 位图字体

下载Bitmap Font Generator BMFont - AngelCode.com 解压后不用安装直接双击使用 提前设置 1、设置Bit depth为32 Options->Export options 2、清空所选字符 因为我们将在后边导入需要的字符。 Edit->Select all chars 先选择所有字符 Edit->Clear all chars i…

双重差分学习笔记

双重差分适用的研究场景&#xff1a; 研究某项政策或者冲击造成的影响 例如&#xff0c;某某小学在2024.12.12日颁布了小红花激励措施&#xff0c;我们要研究这项措施对学生成绩的影响&#xff0c;此时&#xff0c;就可以使用双重差分模型。 双重差分适用的数据类型&#xf…

项目设置内网 IP 访问实现方案

在我们平常的开发工作中&#xff0c;项目开发、测试完成后进行部署上线。比如电商网站、新闻网站、社交网站等&#xff0c;通常对访问不会进行限制。但是像企业内部网站、内部管理系统等&#xff0c;这种系统一般都需要限制访问&#xff0c;比如内网才能访问等。那么一个网站应…

数仓搭建(hive):DWB层(基础数据层)

维度退化: 通过减少表的数量和提高数据的冗余来优化查询性能。 在维度退化中&#xff0c;相关的维度数据被合并到一个宽表中&#xff0c;减少了查询时需要进行的表连接操作。例如&#xff0c;在销售数据仓库中&#xff0c;客户信息、产品信息和时间信息等维度可能会被合并到一…

多模态特征提取与融合助力高光谱+LiDAR数据分类性能飞跃

目录 论文解读 总体架构 CMIIE 模块工作模式 MLFFC模块工作模式 论文解读 提出了一种新的多模态特征提取模块CMIIE,可以捕获高光谱和LiDAR数据之间的互补信息。设计了一个多层特征融合分类模块MLFFC,通过对不同层级的特征进行融合来提高分类性能。使用对抗学习策略来指导网…

Flutter 正在推进全新 PlatformView 实现 HCPP, 它又用到了 Android 上的什么黑科技

跨平台开发里的 PlatformView 实现一直是一个经久不衰的话题&#xff0c;在之前的 《深入 Flutter 和 Compose 的 PlatformView 实现对比》 我们就详细聊过 Flutter 和 Compose 在 PlatformView 实现上的异同之处&#xff0c;也聊到了 Compose 为什么在相同实现上对比 Flutter …

Qt/C++面试【速通笔记一】

Qt 信号与槽机制 什么是信号&#xff08;Signal&#xff09;和槽&#xff08;Slot&#xff09;&#xff1f; 在Qt中&#xff0c;信号&#xff08;Signal&#xff09;和槽&#xff08;Slot&#xff09;是实现对象之间通信的一种机制。信号是对象在某些事件发生时发出的通知&…

《跟李沐学 AI》AlexNet论文逐段精读学习心得 | PyTorch 深度学习实战

前一篇文章&#xff0c;使用 AlexNet 实现图片分类 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于学习 9年后重读深度学习奠基作之一&#xff1a;AlexNet【下】【论文精读】】的心得。 《跟李沐…

【科研绘图系列】R语言绘制小提琴图、散点图和韦恩图(violin scatter plot Venn)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍加载R包数据下载画图1画图2画图3画图4画图5画图6画图7参考介绍 【科研绘图系列】R语言绘制小提琴图、散点图和韦恩图(violin & scatter plot & Venn) 加载R包 library…

IMX6ULL的ALT0、ALT1、ALT2、ALT3、ALT4等是啥意思?

在IMX6ULL的手册IMX6ULLRM.pdf中&#xff0c;发现了题目中这些描述&#xff0c;相关截图如下&#xff1a; 那么红框中的ALT0、ALT1、ALT2、ALT3、ALT4等是啥意思呢&#xff1f; 在IMX6ULL及其他NXP&#xff08;Freescale&#xff09;芯片中&#xff0c;ALT0、ALT1、ALT2、ALT…

Android Http-server 本地 web 服务

时间&#xff1a;2025年2月16日 地点&#xff1a;深圳.前海湾 需求 我们都知道 webview 可加载 URI&#xff0c;他有自己的协议 scheme&#xff1a; content:// 标识数据由 Content Provider 管理file:// 本地文件 http:// 网络资源 特别的&#xff0c;如果你想直接…

DeepSeek 冲击(含本地化部署实践)

DeepSeek无疑是春节档最火爆的话题&#xff0c;上线不足一月&#xff0c;其全球累计下载量已达4000万&#xff0c;反超ChatGPT成为全球增长最快的AI应用&#xff0c;并且完全开源。那么究竟DeepSeek有什么魔力&#xff0c;能够让大家趋之若鹜&#xff0c;他又将怎样改变世界AI格…