2025最新智能优化算法:改进型雪雁算法(Improved Snow Geese Algorithm, ISGA)求解23个经典函数测试集,MATLAB

一、改进型雪雁算法

雪雁算法(Snow Geese Algorithm,SGA)是2024年提出的一种新型元启发式算法,其灵感来源于雪雁的迁徙行为,特别是它们在迁徙过程中形成的独特“人字形”和“直线”飞行模式。该算法通过模拟雪雁的飞行行为,实现了在解空间中的高效搜索和优化。SGA算法主要分为三个阶段:初始化阶段、探索阶段和开发阶段。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

改进型雪雁算法(Improved Snow Geese Algorithm, ISGA) 是2025年提出的一种新型元启发式算法,是对雪雁算法(SGA)的改进,旨在解决复杂工程优化问题和聚类优化问题。ISGA通过引入三种改进策略,显著提升了算法的探索和开发能力,从而提高了算法的收敛速度和精度。
改进策略:
领头雁轮换机制:
模拟雪雁迁徙过程中,当领头雁疲劳时,其他强壮的雪雁会接替领头雁的位置,以维持飞行效率和速度。
通过竞争机制,选择适应值最高的个体作为新的领头雁,从而增强算法的全局探索能力。
鸣叫引导机制:
模拟雪雁通过鸣叫进行沟通,以引导飞行方向。
使用声波传播的衰减模型,根据个体与领头雁的距离调整其位置更新,避免因过度聚集或分散导致的开发能力下降。
异常边界策略:
考虑雪雁作为群居鸟类,个体害怕离群的特性。
通过计算个体的适应值与群体平均适应值的差异,调整个体的位置更新,以提高算法的收敛速度和精度。

在这里插入图片描述
在这里插入图片描述

算法流程:
在这里插入图片描述
在这里插入图片描述
算法性能:
探索与开发能力:ISGA在探索阶段通过领头雁轮换机制增强全局搜索能力,在开发阶段通过鸣叫引导机制和异常边界策略提高局部搜索精度。
收敛速度与精度:ISGA在多个测试函数上表现出更快的收敛速度和更高的收敛精度,特别是在高维问题上表现更为突出。
稳定性:通过多次独立运行的实验结果表明,ISGA在不同维度和不同类型的优化问题上均表现出较高的稳定性和鲁棒性。
参考文献:
[1]Bian, H., Li, C., Liu, Y. et al. Improved snow geese algorithm for engineering applications and clustering optimization. Sci Rep 15, 4506 (2025). https://doi.org/10.1038/s41598-025-88080-7
[2][1] Tian A Q , Liu F F , Lv H X .Snow Geese Algorithm: A novel migration-inspired meta-heuristic algorithm for constrained engineering optimization problems[J].Applied Mathematical Modelling, 2024, 126:327-347.DOI:10.1016/j.apm.2023.10.045.

二、23个函数介绍

在这里插入图片描述
参考文献:

[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.

三、部分代码及结果



clear;
clc;
close all;
warning off all;

SearchAgents_no=50;    %Number of search solutions
Max_iteration=500;    %Maximum number of iterations

Func_name='F1'; % Name of the test function

% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_F(Func_name); 

tic;
[Best_score,Best_pos,cg_curve]=ISGA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); 
tend=toc;

% figure('Position',[500 500 901 345])
%Draw search space
subplot(1,2,1);
func_plot(Func_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Func_name,'( x_1 , x_2 )'])

%Draw objective space
subplot(1,2,2);
semilogy(cg_curve,'Color','m',LineWidth=2.5)
title(Func_name)

% title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');

axis tight
grid on
box on
legend('ISGA')

display(['The running time is:', num2str(tend)]);
display(['The best fitness is:', num2str(Best_score)]);
display(['The best position is: ', num2str(Best_pos)]);

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码见下方名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/973072.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【从0做项目】Java文档搜索引擎(9)烧脑终章!

阿华代码,不是逆风,就是我疯 你们的点赞收藏是我前进最大的动力!! 希望本文内容能够帮助到你!! 文章导读 阿华将发布项目复盘系列的文章,旨在: 1:手把手细致带大家从0到…

cs106x-lecture12(Autumn 2017)-SPL实现

打卡cs106x(Autumn 2017)-lecture12 (以下皆使用SPL实现,非STL库,后续课程结束会使用STL实现) travel Write a recursive function named travel that accepts integers x and y as parameters and uses recursive backtracking to print all solution…

vue取消全选功能按钮注意事项

这里这个功能是通过各种条件查出数据,但只取一条数据进行后续业务,虽然每一条数据前面都有多选框,但只需要选一个,所以在业务上分析可以把这个全选按钮取消掉 这里不是简单的把多选组件的selection-change"handleSelectionChange"和handleSelectionChange方法去掉,因…

三维扫描仪:如何快速获取产品外部结构尺寸?

在精密制造与质量控制领域,传统测量方法因接触式检测效率低、数据维度单一等问题,正面临数字化升级的迫切需求。 传统测量方法的局限性: 传统的测量工具,如卡尺、千分尺和三坐标测量仪,虽然在精度上有一定的保证&…

无人机避障——感知篇(采用Livox-Mid360激光雷达获取点云数据显示)

电脑配置:Xavier-nx、ubuntu 18.04、ros melodic 激光雷达:Livox_Mid-360 1、安装激光雷达驱动 下载安装Livox-SDK2 如果git clone不了,在github上下载相应的zip进行手动安装,安装网址如下: https://github.com/L…

ubuntu22.04使用minikube安装k8s

ubuntu使用minikube安装k8s 准备工作安装步骤安装docker安装kubectl安装minikube导入相关镜像安装相关指令启动minikube服务 安装dashboard组件导入相关镜像创建服务账号安装组件本体验证安装结果 准备工作 下载离线安装包,安装包内容如下: 软件说明ki…

西门子1200下载、上传程序。

下载 第一种 直接点击图标下载,此种方式PLC会停机。 第二种 这三种的区别: 上传 创建新的项目。

基于Openlayers对GeoServer发布的数据进行增删改

使用GeoServer进行图斑数据管理 本文将介绍如何使用GeoServer进行图斑数据的新增、删除和修改。我们将通过一个Vue.js应用来演示这些功能。 设置Vue.js应用 首先,我们设置Vue.js应用,并添加必要的组件和交互逻辑。 Check.vue Check.vue文件包含初始…

自动化之ansible(二)

一、ansible中playbook(剧本) 官方文档: Ansible playbooks — Ansible Community Documentation 1、playbook的基本结构 一个基本的playbook由以下几个主要部分组成 hosts: 定义要执行任务的主机组或主机。 become: 是否需要使用超级用户…

函数执行中的栈和寄存器调用

函数执行中的栈和寄存器调用 函数执行过程中主要用到的寄存器有程序计数器和栈指针。 程序计数器(IP):指向下一条执行指令的地址,其值用%rip来表示 栈指针:指向栈顶地址,其值用%rsp来表示 当过程P调用过…

纯新手教程:用llama.cpp本地部署DeepSeek蒸馏模型

0. 前言 llama.cpp是一个基于纯C/C实现的高性能大语言模型推理引擎,专为优化本地及云端部署而设计。其核心目标在于通过底层硬件加速和量化技术,实现在多样化硬件平台上的高效推理,同时保持低资源占用与易用性。 最近DeepSeek太火了&#x…

建筑兔零基础自学python记录22|实战人脸识别项目——视频人脸识别(下)11

这次我们继续解读代码,我们主要来看下面两个部分; 至于人脸识别成功的要点我们在最后总结~ 具体代码学习: #定义人脸名称 def name():#预学习照片存放位置path M:/python/workspace/PythonProject/face/imagePaths[os.path.join(path,f) f…

【Java消息队列】应对消息丢失、重复、顺序与积压的全面策略

应对消息丢失、重复、顺序与积压的全面策略 引言kafka消息丢失生产者消费者重复消费顺序消费消息积压生产者消费者其他RabbitMQ消息丢失生产者事务机制,保证生产者发送消息到 RabbitMQ Server发送方确认机制,保证消息能从交换机路由到指定队列保证消息在 RabbitMQ Server 中的…

PHP会务会议系统小程序源码

📅 会务会议系统 一款基于ThinkPHPUniapp框架,精心雕琢的会议管理微信小程序,专为各类高端会议场景量身打造。它犹如一把开启智慧殿堂的金钥匙,为会议流程优化、开支精细化管理、数量精准控制、标准严格设定以及供应商严格筛选等…

Unity通过Vosk实现离线语音识别方法

标注:deepseek直接生成,待验证 在Unity中实现离线语音识别可以通过集成第三方语音识别库来实现。以下是一个使用 Unity 和 Vosk(一个开源的离线语音识别库)的简单示例。 准备工作 Vosk:一个开源的离线语音识别库&am…

架构学习第七周--Prometheus

目录 一、监控系统基础 二、Prometheus介绍 三、Prometheus单机部署 四、服务发现与告警功能 4.1,服务发现 4.2,告警功能实现 五、Prometheus与Kubernetes 5.1,Kubernetes指标 5.2,Prometheus集群部署 一、监控系统基础…

技术总结 | MySQL面试知识点

MySQL面试知识点 1.存储引擎1.1 Archive1.2 BlackHole1.3 MyISAM1.4 InnoDB (重点记一下哦)1.5 Memory1.6 CSV 2. 事务2.1. 什么是事务2.2. 事务的特性2.3. 事务的操作sql2.4. 事务的隔离级别 3.三大日志3.1. undo log 回滚日志3.2. redo log 重做日志3.3. bin log 二进制日志4…

DeepSeek模型快速部署教程-搭建自己的DeepSeek

前言:在人工智能技术飞速发展的今天,深度学习模型已成为推动各行各业智能化转型的核心驱动力。DeepSeek 作为一款领先的 AI 模型,凭借其高效的性能和灵活的部署方式,受到了广泛关注。无论是自然语言处理、图像识别,还是…

图论 之 BFS

文章目录 3243.新增道路查询后的最短距离1311.获取你好友已观看的视频 BFS:广度优先搜索(BFS) 是一种常用的算法,通常用于解决图或树的遍历问题,尤其是寻找最短路径或层级遍历的场景。BFS 的核心思想是使用队列(FIFO 数…

VSCode集成deepseek使用介绍(Visual Studio Code)

VSCode集成deepseek使用介绍(Visual Studio Code) 1. 简介 随着AI辅助编程工具的快速发展,VSCode作为一款轻量级、高度可扩展的代码编辑器,已成为开发者首选的工具之一。DeepSeek作为AI模型,结合Roo Code插件&#x…