有3个文件
game.py 五子棋游戏
mod.py 神经网络模型
xl.py 训练的代码
aigame.py 玩家与对战的五子棋
game.py
class Game:
def __init__(self, h, w):
# 行数
self.h = h
# 列数
self.w = w
# 棋盘
self.L = [['-' for _ in range(w)] for _ in range(h)]
# 当前玩家 - 表示空 X先下 然后是O
self.cur = 'X'
# 游戏胜利者
self.win_user = None
# 检查下完这步后有没有赢 y是行 x是列 返回True表示赢
def check_win(self, y, x):
directions = [
# 水平、垂直、两个对角线方向
(1, 0), (0, 1), (1, 1), (1, -1)
]
player = self.L[y][x]
for dy, dx in directions:
count = 0
# 检查四个方向上的连续相同棋子
for i in range(-4, 5): # 检查-4到4的范围,因为五子连珠需要5个棋子
ny, nx = y + i * dy, x + i * dx
if 0 <= ny < self.h and 0 <= nx < self.w and self.L[ny][nx] == player:
count += 1
if count == 5:
return True
else:
count = 0
return False
# 检查能不能下这里 y行 x列 返回True表示能下
def check(self, y, x):
return self.L[y][x] == '-' and self.win_user is None
# 打印棋盘 可视化用得到
def __str__(self):
# 确定行号和列号的宽度
row_width = len(str(self.h - 1))
col_width = len(str(self.w - 1))
# 生成带有行号和列号的棋盘字符串表示
result = []
# 添加列号标题
result.append(' ' * (row_width + 1) + ' '.join(f'{i:>{col_width}}' for i in range(self.w)))
# 添加分隔线(可选)
result.append(' ' * (row_width + 1) + '-' * (col_width * self.w))
# 添加棋盘行
for y, row in enumerate(self.L):
# 添加行号
result.append(f'{y:>{row_width}} ' + ' '.join(f'{cell:>{col_width}}' for cell in row))
return '\n'.join(result)
# 一步棋
def set(self, y, x):
if self.win_user or not self.check(y, x):
return False
self.L[y][x] = self.cur
if self.check_win(y, x):
self.win_user = self.cur
return True
self.cur = 'X' if self.cur == 'O' else 'O'
return True
#和棋
def heqi(self):
for y in range(self.h):
for x in range(self.w):
if self.L[y][x]=='-':
return False
return True
#玩家自己下
def run_game01():
g = Game(15, 15)
while not g.win_user:
# 打印当前棋盘状态
while 1:
print(g)
try:
y,x=input(g.cur+':').split(',')
x=int(x)
y=int(y)
if g.set(y,x):
break
except Exception as e:
print(e)
print(g)
print('胜利者',g.win_user)
mod.py
import torch
import torch.nn as nn
import torch.optim as optim
from game import Game
class MyMod(nn.Module):
def __init__(self, input_channels=1, output_size=15*15):
super(MyMod, self).__init__()
# 定义卷积层,用于提取特征
self.conv1 = nn.Conv2d(input_channels, 32, kernel_size=3, padding=1) # 输出 32 x 15 x 15
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) # 输出 64 x 15 x 15
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) # 输出 128 x 15 x 15
# 定义全连接层,用于最后的得分预测
self.fc1 = nn.Linear(128 * 15 * 15, 1024) # 展平后传入全连接层
self.fc2 = nn.Linear(1024, output_size) # 输出 15*15 的得分预测
def forward(self, x):
# 卷积层 -> 激活函数 -> 最大池化
x = torch.relu(self.conv1(x))
x = torch.relu(self.conv2(x))
x = torch.relu(self.conv3(x))
# 将卷积层输出展平为一维
x = x.view(x.size(0), -1)
# 全连接层
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 保存模型权重
def save(self, path):
torch.save(self.state_dict(), path)
# 加载模型权重
def load(self, path):
self.load_state_dict(torch.load(path))
#改进一下 output 把有棋子的地方的概率=0避免下这些地方
# 输入Game对象和MyMod对象,用于得到概率最大的落棋点 (行y, 列x)
def input_qi(g: Game, m: MyMod):
# 获取当前棋盘状态
board_state = g.L # 使用 game.L 获取当前棋盘的状态 (15x15的二维列表)
# 将棋盘状态转换为PyTorch的Tensor并增加一个维度(batch_size = 1)
board_tensor = torch.tensor([[1 if cell == 'X' else -1 if cell == 'O' else 0 for cell in row] for row in board_state],
dtype=torch.float32).unsqueeze(0).unsqueeze(0) # 形状变为 (1, 1, 15, 15)
# 传入模型获取每个位置的得分
output = m(board_tensor)
# 将输出转为概率值(可以使用softmax来归一化)
probabilities = torch.softmax(output, dim=-1).view(g.h, g.w).detach().numpy() # 变为 (15, 15) 大小
# 将已有棋子的位置的概率设置为 -inf,避免选择这些位置
for y in range(g.h):
for x in range(g.w):
if board_state[y][x] != '-':
probabilities[y, x] = -float('inf') # 设置已经有棋子的地方的概率为 -inf
# 找到概率最大的落子点
max_prob_pos = divmod(probabilities.argmax(), g.w) # 得到最大概率的行列坐标
# 确保返回的是合法的位置
y, x = max_prob_pos
return (y, x), output # 返回坐标和模型输出
xl.py
import os
import torch
import torch.optim as optim
import torch.nn.functional as F
from mod import MyMod, input_qi, Game
# 两个权重文件,分别代表 X 棋和 O 棋
MX = 'MX'
MO = 'MO'
# 加载模型,若文件不存在则初始化
def load_model(model, path):
if os.path.exists(path):
model.load(path)
print(f"Loaded model from {path}")
else:
print(f"{path} not found, initializing new model.")
# 这里可以加一些初始化模型的代码,例如:
# model.apply(init_weights) 如果需要初始化权重
# 初始化模型
modx = MyMod()
load_model(modx, MX)
modo = MyMod()
load_model(modo, MO)
# 定义优化器
lr=0.001
optimizer_x = optim.Adam(modx.parameters(), lr=lr)
optimizer_o = optim.Adam(modo.parameters(), lr=lr)
# 损失函数:根据游戏结果调整损失
def compute_loss(winner: int, player: str, model_output):
# 将目标值转换为相应的张量
if player == "X":
if winner == 1: # X 胜
target = torch.tensor(1.0, dtype=torch.float32)
elif winner == 0: # 平局
target = torch.tensor(0.5, dtype=torch.float32)
else: # X 输
target = torch.tensor(0.0, dtype=torch.float32)
else:
if winner == -1: # O 胜
target = torch.tensor(1.0, dtype=torch.float32)
elif winner == 0: # 平局
target = torch.tensor(0.5, dtype=torch.float32)
else: # O 输
target = torch.tensor(0.0, dtype=torch.float32)
# 确保目标值的形状和 model_output 一致,假设 model_output 是单一的值
target = target.unsqueeze(0).unsqueeze(0) # 形状变为 (1, 1)
# 使用均方误差损失计算
return F.mse_loss(model_output, target)
# 训练模型的过程
def train_game():
modx.train()
modo.train()
# 创建新的游戏实例
game = Game(15, 15) # 默认是 15x15 棋盘
# 反向传播和优化
optimizer_x.zero_grad()
optimizer_o.zero_grad()
while not game.win_user: # 游戏未结束
# X 方落子
x_move, x_output = input_qi(game, modx) # 获取落子位置和模型输出(x_output 是模型的输出)
game.set(x_move[0], x_move[1]) # X 下棋
if game.win_user:
break
# O 方落子
o_move, o_output = input_qi(game, modo) # 获取落子位置和模型输出(o_output 是模型的输出)
#print(o_move,game)
game.set(o_move[0], o_move[1]) # O 下棋
# 获取比赛结果
winner = 0 if game.heqi() else (1 if game.win_user == 'X' else -1) # 1为X胜,-1为O胜,0为平局
# 计算损失
loss_x = compute_loss(winner, "X", x_output) # 传递模型输出给计算损失函数
loss_o = compute_loss(winner, "O", o_output) # 传递模型输出给计算损失函数
# 计算损失并进行反向传播
loss_x.backward()
loss_o.backward()
# 更新权重
optimizer_x.step()
optimizer_o.step()
print(game)
return loss_x.item(), loss_o.item()
# 训练多个回合
def train(num_epochs,n):
k=0
for epoch in range(num_epochs):
loss_x, loss_o = train_game()
print(f"Epoch [{epoch+1}/{num_epochs}], Loss X: {loss_x}, Loss O: {loss_o}")
k+=1
if k==n:
modo.save('MO')
modx.save('MX')
print('saved')
k=0
# 开始训练
train(50000,1000)
aigame.py
from game import Game
from mod import MyMod,input_qi
#玩家下X ai下O
def playX():
m=MyMod()
m.load('MO')
g=Game(15,15)
while 1:
print(g)
if g.heqi() or g.win_user:
break
while 1:
try:
r=input('X:')
y,x=r.split(',')
y=int(y)
x=int(x)
if g.set(y,x):
break
except Exception as e:
print(e)
if g.heqi() or g.win_user:
break
while 1:
(y,x),_=input_qi(g,m)
if g.set(y,x):
break
print(g)
print('winner',g.win_user)
#玩家下O ai下X
def playO():
m=MyMod()
m.load('MX')
g=Game(15,15)
while 1:
if g.heqi() or g.win_user:
break
while 1:
(y,x),_=input_qi(g,m)
if g.set(y,x):
break
if g.heqi() or g.win_user:
break
print(g)
while 1:
try:
r=input('O:')
y,x=r.split(',')
y=int(y)
x=int(x)
if g.set(y,x):
break
except Exception as e:
print(e)
print(g)
print('winner',g.win_user)
playX()