08模拟法 + 技巧 + 数学 + 缓存(D3_数学)

目录

1. 多数元素

1.1. 题目描述

1.2. 解题思路

方法一:哈希表

方法二:排序

方法三:随机化

方法四:分治

方法五:Boyer-Moore 投票算法

2. 按规则计算统计结果

2.1. 题目描述

2.2. 解题思路

3. 整数拆分

3.1. 题目描述

3.2. 解题思路

方法一:动态规划

方法二:优化的动态规划

方法三:数学

4. 文件组合

4.1. 题目描述

4.2. 解题思路

方法一:枚举 + 暴力

方法二:枚举 + 数学优化

方法三:双指针

5. 破冰游戏

5.1. 题目描述

5.2. 解题思路

方法一:数学 + 递归

6. 数字 1 的个数

6.1. 题目描述

6.2. 解题思路

方法一:枚举每一数位上 111 的个数

7. 第 N 位数字

7.1. 题目描述

7.2. 解题思路

方法一:二分查找

方法二:直接计算


1. 多数元素

1.1. 题目描述

1.2. 解题思路

方法一:哈希表

class Solution {
    private Map<Integer, Integer> countNums(int[] nums) {
        Map<Integer, Integer> counts = new HashMap<Integer, Integer>();
        for (int num : nums) {
            if (!counts.containsKey(num)) {
                counts.put(num, 1);
            } else {
                counts.put(num, counts.get(num) + 1);
            }
        }
        return counts;
    }

    public int majorityElement(int[] nums) {
        Map<Integer, Integer> counts = countNums(nums);

        Map.Entry<Integer, Integer> majorityEntry = null;
        for (Map.Entry<Integer, Integer> entry : counts.entrySet()) {
            if (majorityEntry == null || entry.getValue() > majorityEntry.getValue()) {
                majorityEntry = entry;
            }
        }

        return majorityEntry.getKey();
    }
}

方法二:排序

class Solution {
    public int majorityElement(int[] nums) {
        Arrays.sort(nums);
        return nums[nums.length / 2];
    }
}

方法三:随机化

class Solution {
    private int randRange(Random rand, int min, int max) {
        return rand.nextInt(max - min) + min;
    }

    private int countOccurences(int[] nums, int num) {
        int count = 0;
        for (int i = 0; i < nums.length; i++) {
            if (nums[i] == num) {
                count++;
            }
        }
        return count;
    }

    public int majorityElement(int[] nums) {
        Random rand = new Random();

        int majorityCount = nums.length / 2;

        while (true) {
            int candidate = nums[randRange(rand, 0, nums.length)];
            if (countOccurences(nums, candidate) > majorityCount) {
                return candidate;
            }
        }
    }
}

方法四:分治

class Solution {
    private int countInRange(int[] nums, int num, int lo, int hi) {
        int count = 0;
        for (int i = lo; i <= hi; i++) {
            if (nums[i] == num) {
                count++;
            }
        }
        return count;
    }

    private int majorityElementRec(int[] nums, int lo, int hi) {
        // base case; the only element in an array of size 1 is the majority
        // element.
        if (lo == hi) {
            return nums[lo];
        }

        // recurse on left and right halves of this slice.
        int mid = (hi - lo) / 2 + lo;
        int left = majorityElementRec(nums, lo, mid);
        int right = majorityElementRec(nums, mid + 1, hi);

        // if the two halves agree on the majority element, return it.
        if (left == right) {
            return left;
        }

        // otherwise, count each element and return the "winner".
        int leftCount = countInRange(nums, left, lo, hi);
        int rightCount = countInRange(nums, right, lo, hi);

        return leftCount > rightCount ? left : right;
    }

    public int majorityElement(int[] nums) {
        return majorityElementRec(nums, 0, nums.length - 1);
    }
}

方法五:Boyer-Moore 投票算法

class Solution {
    public int majorityElement(int[] nums) {
        int count = 0;
        Integer candidate = null;

        for (int num : nums) {
            if (count == 0) {
                candidate = num;
            }
            count += (num == candidate) ? 1 : -1;
        }

        return candidate;
    }
}

2. 按规则计算统计结果

2.1. 题目描述

2.2. 解题思路

class Solution {

    public int[] statisticalResult(int[] arrayA) {
        
        int len = arrayA.length;
        if(len == 0) return new int[0];
        int[] arrayB = new int[len];
        arrayB[0] = 1;
        int tmp = 1;

        for(int i = 1; i < len; i++) {
            arrayB[i] = arrayB[i - 1] * arrayA[i - 1];
        }

        for(int i = len - 2; i >= 0; i--) {
            tmp *= arrayA[i + 1];
            arrayB[i] *= tmp;
        }
        
        return arrayB;
        
    }

}

3. 整数拆分

3.1. 题目描述

3.2. 解题思路

方法一:动态规划

class Solution {
    public int integerBreak(int n) {
        int[] dp = new int[n + 1];
        for (int i = 2; i <= n; i++) {
            int curMax = 0;
            for (int j = 1; j < i; j++) {
                curMax = Math.max(curMax, Math.max(j * (i - j), j * dp[i - j]));
            }
            dp[i] = curMax;
        }
        return dp[n];
    }
}

方法二:优化的动态规划

class Solution {
    public int integerBreak(int n) {
        if (n <= 3) {
            return n - 1;
        }
        int[] dp = new int[n + 1];
        dp[2] = 1;
        for (int i = 3; i <= n; i++) {
            dp[i] = Math.max(Math.max(2 * (i - 2), 2 * dp[i - 2]), Math.max(3 * (i - 3), 3 * dp[i - 3]));
        }
        return dp[n];
    }
}
方法三:数学

class Solution {
    public int integerBreak(int n) {
        if (n <= 3) {
            return n - 1;
        }
        int quotient = n / 3;
        int remainder = n % 3;
        if (remainder == 0) {
            return (int) Math.pow(3, quotient);
        } else if (remainder == 1) {
            return (int) Math.pow(3, quotient - 1) * 4;
        } else {
            return (int) Math.pow(3, quotient) * 2;
        }
    }
}

4. 文件组合

4.1. 题目描述

4.2. 解题思路

方法一:枚举 + 暴力

class Solution {
    public int[][] fileCombination(int target) {
        List<int[]> vec = new ArrayList<int[]>();
        int sum = 0, limit = (target - 1) / 2; // (target - 1) / 2 等效于 target / 2 下取整
        for (int i = 1; i <= limit; ++i) {
            for (int j = i;; ++j) {
                sum += j;
                if (sum > target) {
                    sum = 0;
                    break;
                } else if (sum == target) {
                    int[] res = new int[j - i + 1];
                    for (int k = i; k <= j; ++k) {
                        res[k - i] = k;
                    }
                    vec.add(res);
                    sum = 0;
                    break;
                }
            }
        }
        return vec.toArray(new int[vec.size()][]);
    }
}

方法二:枚举 + 数学优化

class Solution {
    public int[][] fileCombination(int target) {
        List<int[]> vec = new ArrayList<int[]>();
        int sum = 0, limit = (target - 1) / 2; // (target - 1) / 2 等效于 target / 2 下取整
        for (int x = 1; x <= limit; ++x) {
            long delta = 1 - 4 * (x - (long) x * x - 2 * target);
            if (delta < 0) {
                continue;
            }
            int delta_sqrt = (int) Math.sqrt(delta + 0.5);
            if ((long) delta_sqrt * delta_sqrt == delta && (delta_sqrt - 1) % 2 == 0) {
                int y = (-1 + delta_sqrt) / 2; // 另一个解(-1-delta_sqrt)/2必然小于0,不用考虑
                if (x < y) {
                    int[] res = new int[y - x + 1];
                    for (int i = x; i <= y; ++i) {
                        res[i - x] = i;
                    }
                    vec.add(res);
                }
            }
        }
        return vec.toArray(new int[vec.size()][]);
    }
}

方法三:双指针

class Solution {
    public int[][] fileCombination(int target) {
        List<int[]> vec = new ArrayList<int[]>();
        for (int l = 1, r = 2; l < r;) {
            int sum = (l + r) * (r - l + 1) / 2;
            if (sum == target) {
                int[] res = new int[r - l + 1];
                for (int i = l; i <= r; ++i) {
                    res[i - l] = i;
                }
                vec.add(res);
                l++;
            } else if (sum < target) {
                r++;
            } else {
                l++;
            }
        }
        return vec.toArray(new int[vec.size()][]);
    }
}

5. 破冰游戏

5.1. 题目描述

5.2. 解题思路

方法一:数学 + 递归

class Solution {
    public int iceBreakingGame(int num, int target) {
        int f = 0;
        for (int i = 2; i != num + 1; ++i) {
            f = (target + f) % i;
        }
        return f;
    }
}

6. 数字 1 的个数

6.1. 题目描述

6.2. 解题思路

方法一:枚举每一数位上 111 的个数

class Solution {
    public int countDigitOne(int n) {
        // mulk 表示 10^k
        // 在下面的代码中,可以发现 k 并没有被直接使用到(都是使用 10^k)
        // 但为了让代码看起来更加直观,这里保留了 k
        long mulk = 1;
        int ans = 0;
        for (int k = 0; n >= mulk; ++k) {
            ans += (n / (mulk * 10)) * mulk + Math.min(Math.max(n % (mulk * 10) - mulk + 1, 0), mulk);
            mulk *= 10;
        }
        return ans;
    }
}

7. 第 N 位数字

7.1. 题目描述

7.2. 解题思路

方法一:二分查找

class Solution {
    public int findNthDigit(int n) {
        int low = 1, high = 9;
        while (low < high) {
            int mid = (high - low) / 2 + low;
            if (totalDigits(mid) < n) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        int d = low;
        int prevDigits = totalDigits(d - 1);
        int index = n - prevDigits - 1;
        int start = (int) Math.pow(10, d - 1);
        int num = start + index / d;
        int digitIndex = index % d;
        int digit = (num / (int) (Math.pow(10, d - digitIndex - 1))) % 10;
        return digit;
    }

    public int totalDigits(int length) {
        int digits = 0;
        int curLength = 1, curCount = 9;
        while (curLength <= length) {
            digits += curLength * curCount;
            curLength++;
            curCount *= 10;
        }
        return digits;
    }
}

方法二:直接计算

class Solution {
    public int findNthDigit(int n) {
        int d = 1, count = 9;
        while (n > (long) d * count) {
            n -= d * count;
            d++;
            count *= 10;
        }
        int index = n - 1;
        int start = (int) Math.pow(10, d - 1);
        int num = start + index / d;
        int digitIndex = index % d;
        int digit = (num / (int)(Math.pow(10, d - digitIndex - 1))) % 10;
        return digit;
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/969496.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于IOS实现各种倒计时功能

ZJJTimeCountDown 效果图 特点&#xff1a; 1、已封装&#xff0c;支持自定义 2、支持文本各种对齐模式 3、各种效果都可以通过设置 ZJJTimeCountDownLabel 类属性来实现 4、支持背景图片设置 5、分文本显示时间时&#xff0c;支持设置文字大小&#xff0c;来动态设置每个文本…

【TS合成MP4】你怎么专打裂开的切片呀

写在前面&#xff1a;本博客仅作记录学习之用&#xff0c;部分图片来自网络&#xff0c;如需引用请注明出处&#xff0c;同时如有侵犯您的权益&#xff0c;请联系删除&#xff01; 文章目录 前言TS与MP4格式概述TS与MP4格式概述TS合成MP4的需求背景TS合成MP4的方法概述 合并方法…

【动手学强化学习】01初探强化学习

文章目录 什么是强化学习强化学习解决的问题强化学习的独特性 什么是强化学习 强化学习是机器通过与环境交互来实现目标的计算方法。智能体与环境的交互方式如图所示&#xff0c;在每一轮交互中&#xff0c;智能体根据感知状态经过自身计算给出本轮动作&#xff0c;将其作用于…

C++,STL容器适配器,priority_queue:优先队列深入解析

文章目录 一、容器概览与核心特性核心特性速览二、底层实现原理1. 二叉堆结构2. 容器适配器架构三、核心操作详解1. 容器初始化2. 元素操作接口3. 自定义优先队列四、实战应用场景1. 任务调度系统2. 合并K个有序链表五、性能优化策略1. 底层容器选择2. 批量建堆优化六、注意事项…

duckdb导出Excel和导出CSV速度测试

运行duckdb数据库 D:>duckdb v1.2.0 5f5512b827 Enter “.help” for usage hints. Connected to a transient in-memory database. Use “.open FILENAME” to reopen on a persistent database. 生成模拟数据&#xff0c;10个列&#xff0c;100万行数据&#xff1b; --…

k8s集群离线安装kuberay operator

1,安装方式 采用helm安装方式&#xff0c;首先下载对应的helm chart&#xff0c;这里采用v1.2.2版本&#xff0c;下载地址&#xff1a; https://github.com/ray-project/kuberay-helm/releases/tag/kuberay-operator-1.2.2 2,解压并修改镜像源 由于是在内网环境下搭建&#…

结构形模式---适配器模式

适配器模式是一种结构形模式&#xff0c;主要用于不同在两个互不兼容的类或者库之间增加一个转换。 适配器模式的实现由两种方式&#xff0c;一种是适配器对象&#xff0c;一种是适配器类。 适配器是对象是将第三方接口通过对象调用引入到适配器中。 适配器类是通过多继承将…

面向SDV的在环测试深度解析——概述篇

1.引言 在汽车行业迈向软件定义汽车&#xff08;SDV&#xff09;的进程中&#xff0c;传统的硬件在环&#xff08;HIL&#xff09;测试方案在面对新的技术架构和需求时逐渐显露出局限性。一方面&#xff0c;现代汽车的电子电气架构日益复杂&#xff0c;高性能计算&#xff08;…

2025年智慧城市解决方案下载:AI-超脑中台,体系架构整体设计

2025年&#xff0c;随着人工智能、物联网、大数据等新兴技术的深度融合&#xff0c;智慧城市解决方案正迈向更高层次的智能化和协同化阶段。其中&#xff0c;AI-超脑中台作为核心架构的一部分&#xff0c;为城市智能化运行提供了强大支撑。 智慧城市最新解决方案&#xff0c;标…

LINUX常用命令学习

查看系统版本 使用hostnamectl命令检查。hostnamectl显示了CentOS的版本以及操作系统的相关信息&#xff0c;非常方便 设置linux机器别名称 hostnamectl set-hostname 机器别名 --static 华为云 centos 命令&#xff1a;lsb_release -a linux:cat /proc/version 查看进程路…

RK3588 Linux平台部署DeepSeek模型教程

更多内容可以加入Linux系统知识库套餐&#xff08;教程&#xff0b;视频&#xff0b;答疑&#xff09; 文章目录 一、下载rknn-llm 和 deepseek模型二、RKLLM-Toolkit 安装2.1 安装 miniforge3 工具2.2 下载 miniforge3 安装包2.3 安装 miniforge3 三、创建 RKLLM-Toolkit Cond…

Azure从0到1

我能用Azure做什么? Azure提供100多种服务,能够从在虚拟机上运行现有应用程序到探索新的软件范式,如智能机器人和混合现实。许多团队开始通过将现有应用程序移动到在Azure中运行的虚拟机(VM)来探索云。将现有应用程序迁移到虚拟机是一个良好的开端,但云不仅仅是运行虚拟…

智慧城市V4系统小程序源码独立版全插件全开源

智慧城市V4系统小程序源码&#xff1a;多城市代理同城信息服务的全域解决方案 在数字化浪潮的推动下&#xff0c;智慧城市已成为全球发展的核心战略。作为这一领域的革新者&#xff0c;智慧城市V4系统小程序源码凭借其多城市代理同城信息服务能力与多商家营销功能&#xff0c;…

JAVA-Lambda表达式(高质量)

要了解Lambda表达式,首先需要了解什么是函数式接口&#xff0c;函数式接口定义&#xff1a;一个接口有且只有一个抽象方法 。 一、函数式接口 1.FunctionalInterger 注意&#xff1a; 1. 如果一个接口只有一个抽象方法&#xff0c;那么该接口就是一个函数式接口 2. 如果我们…

机器视觉--Halcon变量的创建与赋值

一、引言 在机器视觉领域&#xff0c;Halcon 作为一款强大且功能丰富的软件库&#xff0c;为开发者提供了广泛的工具和算子来处理各种复杂的视觉任务。而变量作为程序中存储和操作数据的基本单元&#xff0c;在 Halcon 编程中起着至关重要的作用。正确地创建和赋值变量是编写高…

优选驾考小程序

第2章 系统分析 2.1系统使用相关技术分析 2.1.1Java语言介绍 Java语言是一种分布式的简单的 开发语言&#xff0c;有很好的特征&#xff0c;在安全方面、性能方面等。非常适合在Internet环境中使用&#xff0c;也是目前企业级运用中最常用的一个编程语言&#xff0c;具有很大…

ubuntu 22.04 安装vsftpd服务

先决条件&#xff0c;确保你已经配置好了存储库。 安装vsftpd 为了方便实验&#xff0c;我已经切换到了root用户。 rootlocal:~# apt-get install vsftpd修改配置 配置文件在 /etc/vsftpd.conf rootlocal:~# grep -vE ^#|^$ /etc/vsftpd.conf listenNO listen_ipv6YES anonymou…

Uniapp 获取定位详解:从申请Key到实现定位功能

文章目录 前言一、申请定位所需的 Key1.1 注册高德开发者账号1.2 创建应用1.3 添加 Key 二、在 Uniapp 中配置定位功能2.1 引入高德地图 SDK2.2 获取定位权限 三、实现定位功能3.1 使用 uni.getLocation 获取位置3.2 处理定位失败的情况3.3 持续定位3.4 停止持续定位 四、总结 …

MATLAB电机四阶轨迹规划考虑jerk、Djerk

1、内容简介 略 126-可以交流、咨询、答疑 2、内容说明 略 在电机控制中&#xff0c;轨迹规划是一个重要的环节&#xff0c;它决定了电机如何从一个状态平滑地过渡到另一个状态。四阶轨迹规划考虑了位置、速度、加速度和加加速度&#xff08;jerk&#xff09;&#xff0c;有…

输电杆塔沉降智能监测系统:如何用数据守护电网安全

产品别称&#xff1a;输电线路杆塔沉降在线监测装置、输电线路北斗杆塔沉降在线监测装置、杆塔地基沉降监测设备、输电杆塔沉降智能监测系统 产品型号&#xff1a;TLKS-PMG-BDS 一、产品概述&#xff1a; 在电力传输系统中&#xff0c;输电线路杆塔的稳定性和安全性至关重要。…