文章目录
- 1.背景
- 2.微调方式
- 2.1 关键环境版本信息
- 2.2 步骤
- 2.2.1 下载llama-factory
- 2.2.2 准备数据集
- 2.2.3 微调模式
- 2.2.4 微调脚本
- 2.3 踩坑经验
- 2.3.1 问题一:ValueError: Undefined dataset xxxx in dataset_info.json.
- 2.3.2 问题二: ValueError: Target modules {'c_attn'} not found in the base model. Please check the target modules and try again.
- 2.3.3 问题三: RuntimeError: The size of tensor a (1060864) must match the size of tensor b (315392) at non-singleton dimension 0。
- 2.4 实验
- 2.4.1 实验1:多GPU微调
1.背景
上一篇文件写到,macbook微调Lora,该微调方式,同样适用于GPU,只不过在train.py脚本中,针对device,调整为cuda即可。
但如果数据量过大的话,单卡微调会存在瓶颈,因此考虑多GPU进行微调。网上找了一圈,多卡微调的常用方式采用deepseed+Llama-factory。
本文主要记录该方式的微调情况,仅为个人学习记录
2.微调方式
2.1 关键环境版本信息
模块 | 版本 |
---|---|
python | 3.10 |
CUDA | 12.6 |
torch | 2.5.1 |
peft | 0.12.0 |
transformers | 4.46.2 |
accelerate | 1.1.1 |
trl | 0.9.6 |
deepspeed | 0.15.4 |
2.2 步骤
2.2.1 下载llama-factory
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"
2.2.2 准备数据集
数据集采用网上流传的《甄嬛传》,数据集结构如下,数据集命名【huanhuan.json】
[
{
"instruction": "小姐,别的秀女都在求中选,唯有咱们小姐想被撂牌子,菩萨一定记得真真儿的——",
"input": "",
"output": "嘘——都说许愿说破是不灵的。"
},
...
]
其次,还得准备数据集信息【dataset_info.json】,因为是本地微调,所以微调时现访问dataset_info,再指定到具体的数据集中。
{
"identity": {
"file_name": "test_data.json"
}
}
注意文本的数据集的格式必须为,json,不然会报错。
2.2.3 微调模式
本次微调采用zero-3的方式,因此在LLaMa-Factory目录下,新增配置文件【ds_config_zero3.json】。
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "none",
"pin_memory": true
},
"offload_param": {
"device": "none",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 100,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
2.2.4 微调脚本
# run_train_bash.sh
#!/bin/bash
# 记录开始时间
START=$(date +%s.%N)
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch src/train.py \
--deepspeed ds_config_zero3.json \
--stage sft \
--do_train True \
--model_name_or_path /root/ai_project/fine-tuning-by-lora/models/model/qwen/Qwen2___5-7B-Instruct \
--finetuning_type lora \
--template qwen \
--dataset_dir /root/ai_project/fine-tuning-by-lora/dataset/ \
--dataset identity \
--cutoff_len 1024 \
--learning_rate 5e-04 \
--num_train_epochs 10 \
--max_samples 100000 \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--max_grad_norm 1.0 \
--logging_steps 5 \
--save_steps 100 \
--warmup_steps 0 \
--neftune_noise_alpha 0 \
--lora_rank 8 \
--lora_dropout 0.1 \
--lora_alpha 32 \
--lora_target q_proj,v_proj,k_proj,gate_proj,up_proj,o_proj,down_proj \
--output_dir ./output/qwen_7b_ds/train_2024_02_27 \
--bf16 True \
--plot_loss True
# 记录结束时间
END=$(date +%s.%N)
# 计算运行时间
DUR=$(echo "$END - $START" | bc)
# 输出运行时间
printf "Execution time: %.6f seconds\n" $DUR
说明一下上述一些关键参数:
参数 | 版本 |
---|---|
–deepspeed | 指定deepspeed加速微调方式 |
–model_name_or_path | 微调模型路径 |
–finetuning_type | 微调方式,这里用lora微调 |
–template | 训练和推理时构造 prompt 的模板,不同大语言模型的模板不一样,这里用的是qwen |
–dataset_dir | 本地的数据集路径 |
–dataset | 指定dataset_info.json中哪个数据集 |
–lora_target | 应用 LoRA 方法的模块名称。 |
–output_dir | 模型输出路径。 |
模型微调参数可以参考:Llama-Factory参数介绍
其他参数,其实就是常规使用peft进行lora微调的常见参数,以及常见的微调参数,可以对照如下。
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1
)
2.3 踩坑经验
2.3.1 问题一:ValueError: Undefined dataset xxxx in dataset_info.json.
如果你脚本的启动参数,–dataset identity。而dataset_info.json中的数据信息,没有“identity”这个key,则会出现这个报错,只要确保你dataset_info.json中存在该key即可。
2.3.2 问题二: ValueError: Target modules {‘c_attn’} not found in the base model. Please check the target modules and try again.
如果你脚本的启动参数,–lora_target参数设为常见的c_attn参数,则会报此错。处理方式还是调整参数,使用Lora微调时的常见参数,q_proj,v_proj,k_proj,gate_proj,up_proj,o_proj,down_proj。注意格式,如果格式不对,还是会报错。
2.3.3 问题三: RuntimeError: The size of tensor a (1060864) must match the size of tensor b (315392) at non-singleton dimension 0。
这种tensor的问题,很可能是模型冲突的问题,比如调到一半,然后重新提调,指到相同的路径。重新指定output路径即可。
2.4 实验
本次测试使用多GPU微调,测试多GPU微调跟单GPU微调的性能对比。实验2后续补充。。。
2.4.1 实验1:多GPU微调
使用3630条数据,8卡微调,微调参数如下,总共280步,耗时
--learning_rate 5e-04
--num_train_epochs 10
--per_device_train_batch_size 4
--gradient_accumulation_steps 4
计算方式
280(step)=3630[数据集]/(4[梯度]*4[每次训练采样batch数据])/8[8GPU]*10[轮次]
训练结果
[INFO|trainer.py:2314] 2025-02-13 08:05:51,986 >> ***** Running training *****
[INFO|trainer.py:2315] 2025-02-13 08:05:51,986 >> Num examples = 3,630
[INFO|trainer.py:2316] 2025-02-13 08:05:51,986 >> Num Epochs = 10
[INFO|trainer.py:2317] 2025-02-13 08:05:51,986 >> Instantaneous batch size per device = 4
[INFO|trainer.py:2320] 2025-02-13 08:05:51,986 >> Total train batch size (w. parallel, distributed & accumulation) = 128
[INFO|trainer.py:2321] 2025-02-13 08:05:51,986 >> Gradient Accumulation steps = 4
[INFO|trainer.py:2322] 2025-02-13 08:05:51,986 >> Total optimization steps = 280
.....
{'loss': 4.9293, 'grad_norm': 0.2562304304292013, 'learning_rate': 0.0005, 'epoch': 0.18}
{'loss': 3.1626, 'grad_norm': 0.19361592540369985, 'learning_rate': 0.0005, 'epoch': 0.35}
{'loss': 2.9427, 'grad_norm': 0.20313623353647364, 'learning_rate': 0.0005, 'epoch': 0.53}
{'loss': 2.9178, 'grad_norm': 0.1633448296719697, 'learning_rate': 0.0005, 'epoch': 0.7}
{'loss': 2.9116, 'grad_norm': 0.17241006366450623, 'learning_rate': 0.0005, 'epoch': 0.88}
{'loss': 3.0758, 'grad_norm': 0.1853092845879873, 'learning_rate': 0.0005, 'epoch': 1.05}
{'loss': 2.5562, 'grad_norm': 0.25384200353297537, 'learning_rate': 0.0005, 'epoch': 1.23}
{'loss': 2.6158, 'grad_norm': 0.2876837326269363, 'learning_rate': 0.0005, 'epoch': 1.4}
{'loss': 2.512, 'grad_norm': 0.2837102971247916, 'learning_rate': 0.0005, 'epoch': 1.58}
{'loss': 2.5483, 'grad_norm': 0.30202190399292755, 'learning_rate': 0.0005, 'epoch': 1.75}
{'loss': 2.5193, 'grad_norm': 0.3233037587534178, 'learning_rate': 0.0005, 'epoch': 1.93}
{'loss': 2.513, 'grad_norm': 0.3515238818579015, 'learning_rate': 0.0005, 'epoch': 2.11}
{'loss': 1.9465, 'grad_norm': 0.36555535286863944, 'learning_rate': 0.0005, 'epoch': 2.28}
{'loss': 1.9132, 'grad_norm': 0.44229627583386516, 'learning_rate': 0.0005, 'epoch': 2.46}
{'loss': 1.9235, 'grad_norm': 0.40111643921780515, 'learning_rate': 0.0005, 'epoch': 2.63}
{'loss': 1.9685, 'grad_norm': 0.38583421690959196, 'learning_rate': 0.0005, 'epoch': 2.81}
{'loss': 1.985, 'grad_norm': 0.3777334046946069, 'learning_rate': 0.0005, 'epoch': 2.98}
{'loss': 1.538, 'grad_norm': 0.5845252817927833, 'learning_rate': 0.0005, 'epoch': 3.16}
{'loss': 1.1791, 'grad_norm': 0.49414752481138235, 'learning_rate': 0.0005, 'epoch': 3.33}
{'loss': 1.1892, 'grad_norm': 0.5207790387399577, 'learning_rate': 0.0005, 'epoch': 3.51}
{'loss': 1.1712, 'grad_norm': 0.5654238235933979, 'learning_rate': 0.0005, 'epoch': 3.68}
{'loss': 1.2197, 'grad_norm': 0.5001492538398, 'learning_rate': 0.0005, 'epoch': 3.86}
{'loss': 1.2771, 'grad_norm': 0.4000143395083798, 'learning_rate': 0.0005, 'epoch': 4.04}
{'loss': 0.6298, 'grad_norm': 0.5240283431664541, 'learning_rate': 0.0005, 'epoch': 4.21}
{'loss': 0.5911, 'grad_norm': 0.47002369192531646, 'learning_rate': 0.0005, 'epoch': 4.39}
{'loss': 0.5958, 'grad_norm': 0.5061747301822586, 'learning_rate': 0.0005, 'epoch': 4.56}
{'loss': 0.6624, 'grad_norm': 0.5320579836394266, 'learning_rate': 0.0005, 'epoch': 4.74}
{'loss': 0.6724, 'grad_norm': 0.517103117110723, 'learning_rate': 0.0005, 'epoch': 4.91}
{'loss': 0.5444, 'grad_norm': 0.3714622914636231, 'learning_rate': 0.0005, 'epoch': 5.09}
{'loss': 0.2655, 'grad_norm': 0.4465471808710968, 'learning_rate': 0.0005, 'epoch': 5.26}
{'loss': 0.2743, 'grad_norm': 0.41505929687508386, 'learning_rate': 0.0005, 'epoch': 5.44}
{'loss': 0.2786, 'grad_norm': 0.43996251312895884, 'learning_rate': 0.0005, 'epoch': 5.61}
{'loss': 0.2785, 'grad_norm': 0.4471303138465939, 'learning_rate': 0.0005, 'epoch': 5.79}
{'loss': 0.2788, 'grad_norm': 0.48705340679487363, 'learning_rate': 0.0005, 'epoch': 5.96}
{'loss': 0.162, 'grad_norm': 0.2921252791608401, 'learning_rate': 0.0005, 'epoch': 6.14}
{'loss': 0.1149, 'grad_norm': 0.30941692561321993, 'learning_rate': 0.0005, 'epoch': 6.32}
{'loss': 0.1173, 'grad_norm': 0.29967155968778664, 'learning_rate': 0.0005, 'epoch': 6.49}
{'loss': 0.13, 'grad_norm': 0.3630332521647509, 'learning_rate': 0.0005, 'epoch': 6.67}
{'loss': 0.1344, 'grad_norm': 0.3125941281688891, 'learning_rate': 0.0005, 'epoch': 6.84}
{'loss': 0.1441, 'grad_norm': 0.5404481434654501, 'learning_rate': 0.0005, 'epoch': 7.02}
{'loss': 0.0567, 'grad_norm': 0.1855727739202254, 'learning_rate': 0.0005, 'epoch': 7.19}
{'loss': 0.0702, 'grad_norm': 0.23380098002732216, 'learning_rate': 0.0005, 'epoch': 7.37}
{'loss': 0.068, 'grad_norm': 0.23202593567669585, 'learning_rate': 0.0005, 'epoch': 7.54}
{'loss': 0.0829, 'grad_norm': 0.23115965023606377, 'learning_rate': 0.0005, 'epoch': 7.72}
{'loss': 0.0766, 'grad_norm': 0.23135481635275945, 'learning_rate': 0.0005, 'epoch': 7.89}
{'loss': 0.067, 'grad_norm': 0.13494924636148561, 'learning_rate': 0.0005, 'epoch': 8.07}
{'loss': 0.0396, 'grad_norm': 0.18481019773823124, 'learning_rate': 0.0005, 'epoch': 8.25}
{'loss': 0.0429, 'grad_norm': 0.19484298588581364, 'learning_rate': 0.0005, 'epoch': 8.42}
{'loss': 0.0416, 'grad_norm': 0.17873844875438857, 'learning_rate': 0.0005, 'epoch': 8.6}
{'loss': 0.0454, 'grad_norm': 0.17303531479845663, 'learning_rate': 0.0005, 'epoch': 8.77}
{'loss': 0.0485, 'grad_norm': 0.17425356837750286, 'learning_rate': 0.0005, 'epoch': 8.95}
{'loss': 0.0334, 'grad_norm': 0.0869599535276032, 'learning_rate': 0.0005, 'epoch': 9.12}
{'loss': 0.0255, 'grad_norm': 0.163465911292555, 'learning_rate': 0.0005, 'epoch': 9.3}
{'loss': 0.0293, 'grad_norm': 0.16522989964282914, 'learning_rate': 0.0005, 'epoch': 9.47}
{'loss': 0.0265, 'grad_norm': 0.15019554228481286, 'learning_rate': 0.0005, 'epoch': 9.65}
{'loss': 0.0326, 'grad_norm': 0.14628796123788834, 'learning_rate': 0.0005, 'epoch': 9.82}
.....
***** train metrics *****
epoch = 9.8246
total_flos = 153160GF
train_loss = 1.0567
train_runtime = 1:01:16.28
train_samples_per_second = 9.874
train_steps_per_second = 0.076
Figure saved at: ./output/qwen_7b_ds/train_2024_02_27/training_loss.png
Execution time: 3717.986219 seconds