Python实现GO鹅优化算法优化支持向量机SVM回归模型项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后关注获取。

1.项目背景

在当今数据驱动的世界中,机器学习技术被广泛应用于各种领域,如金融、医疗、交通和制造业等。支持向量机(Support Vector Machine, SVM)作为一种强大的监督学习方法,在分类和回归任务中都表现出色。特别是在处理高维空间中的非线性问题时,SVM通过核技巧(Kernel Trick)将输入空间映射到更高维度的空间,从而能够更有效地找到最优解。然而,SVM模型的效果高度依赖于其参数的选择,例如惩罚系数C、gamma及其参数等。传统的参数调整方法如网格搜索(Grid Search)和随机搜索(Random Search),虽然可以找到局部最优解,但在面对大规模数据集或复杂参数空间时效率较低,且容易陷入局部最优。

为了克服这些挑战,近年来元启发式优化算法逐渐成为研究热点。这类算法通过模拟自然界中的生物行为或物理现象来解决复杂的优化问题。其中,GO鹅优化算法(Goose Optimization Algorithm, GO)是一种新兴的基于群体智能的优化算法,它模仿了鹅群在寻找食物过程中的集体行为模式。该算法通过个体之间的合作与竞争机制,有效地探索和开发搜索空间,以期找到全局最优解或接近全局最优解的参数组合。相比于其他优化算法,GO算法具有较强的全局搜索能力、快速收敛的特点,并且易于实现和应用。

本项目通过Python实现GO鹅优化算法优化支持向量机SVM回归模型项目实战。         

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码: 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:  

4.探索性数据分析

4.1 y变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。  

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下: 

5.3 数据归一化

数据归一化关键代码如下:

6.构建GO鹅优化算法优化SVM回归模型   

主要使用通过GO鹅优化算法优化支持向量机SVM回归模型,用于目标回归。     

6.1 GO鹅优化算法寻找最优参数值

最优参数值:

6.2 最优参数构建模型 

编号

模型名称

参数

1

SVM回归模型    

C=best_C

2

gamma=best_gamma

3

epsilon=best_epsilon

7.模型评估

7.1评估指标及结果  

评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。

模型名称

指标名称

指标值

测试集

SVM回归模型    

R方

0.98

均方误差

0.0004

解释方差分

0.9871

绝对误差

0.017

从上表可以看出,R方分值为0.98,说明模型效果比较好。    

关键代码如下:     

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型效果良好。      

8.结论与展望

综上所述,本文采用了Python实现GO鹅优化算法优化支持向量机SVM回归算法来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/968742.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

通过环境变量实现多个 python 版本的自由切换以及 Conda 虚拟环境的使用教程

目录 Python 安装包的下载和安装通过环境变量的方式来切换不同的 Python 版本Pycharm 创建项目使用虚拟环境 使用虚拟环境管理工具 condaConda 教程1. **环境管理**创建虚拟环境激活虚拟环境退出虚拟环境列出所有虚拟环境删除虚拟环境导出虚拟环境配置从文件创建虚拟环境 2. **…

OSPF高级特性(3):安全特效

引言 OSPF的基础我们已经结束学习了,接下来我们继续学习OSPF的高级特性。为了方便大家阅读,我会将高级特性的几篇链接放在末尾,所有链接都是站内的,大家点击即可阅读: OSPF基础(1):工…

百度 API 教程 001:显示地图并添加控件

目录 01、基本使用 前期准备 显示地图 开启鼠标滚轮缩放地图 02、添加地图控件 添加标准地图控件 添加多个控件 网址:地图 JS API | 百度地图API SDK 01、基本使用 前期准备 注册百度账号 申请成为开发者 获取密钥:控制台 | 百度地图开放平台…

window patch按块分割矩阵

文章目录 1. excel 示意2. pytorch代码3. window mhsa 1. excel 示意 将一个三维矩阵按照window的大小进行拆分成多块2x2窗口矩阵,具体如下图所示 2. pytorch代码 pytorch源码 import torch import torch.nn as nn import torch.nn.functional as Ftorch.set_p…

excel里的函数技巧(持续更新中)

行转列 在 Excel 中,行转列(将一行数据转换为一列,或者将一列数据转换为一行)是一项常见的操作。你可以使用 转置 功能轻松实现这一操作。 TRANSPOSE(数组)

#渗透测试#批量漏洞挖掘#29网课交单平台 SQL注入

免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停止本文章读。 目录 1. 漏洞原理 2. 漏洞定位 3. 攻击验证示…

我用AI做数据分析之四种堆叠聚合模型的比较

我用AI做数据分析之四种堆叠聚合模型的比较 这里AI数据分析不仅仅是指AI生成代码的能力,我想是测试AI数据分析方面的四个能力,理解人类指令的能力、撰写代码的能力、执行代码的能力和解释结果的能力。如果这四个能力都达到了相当的水准,才可…

机器学习 - 机器学习模型的评价指标

为了衡量一个机器学习模型的好坏,需要给定一个测试集,用模型对测试集 中的每一个样本进行预测,并根据预测结果计算评价分数。本文,我们来了解一下机器学习模型常用的评价指标。 一、分类问题常用到的混淆矩阵 在分类任务中&…

ChatGPT macOS 桌面应用让你的编程体验更上一层楼

高效开发必备:ChatGPT macOS 桌面应用亮点盘点 ©作者|Ninja Geek 来源|神州问学 通过 macOS 版 ChatGPT 应用,已经能够更好的和你的生产力工具无缝配合工作。 大概在三四周之前,Anthropic 在 Claude 上推出了一项名为 Computer Use 的功…

DeepSeek之Api的使用(将DeepSeek的api集成到程序中)

一、DeepSeek API 的收费模式 前言:使用DeepSeek的api是收费的 免费版: 可能提供有限的免费额度(如每月一定次数的 API 调用),适合个人开发者或小规模项目。 付费版: 超出免费额度后,可能需要按…

蓝桥杯(B组)-每日一题

题目: 思路: 首先将所有牛分类 1.a第一头母牛-每年年初生一头小母牛 2.不能生小牛的牛: b1-一岁小母牛 b2-二岁小母牛 b3-三岁小母牛 超过4岁就会再生一头小牛 因此计算每年生的小牛是第一头生的a再加上4岁后的生的 代码实现&#xff1…

deepseek+ollama+anythingLLM搭建本地知识库AI的笔记

所有内容都安装在docker里,安装完ollama后,在其bash里: ollama run deepseek-r1:1.5b 于是就安装好了deepseek, 再安装anythingLLM有点坑: export STORAGE_LOCATION$HOME/anythingllm && \ mkdir -p $STORAGE_LOCATIO…

Python中的json文件操作

1.1 基础知识 什么是JSON:(JavaScript Object Notation)是一种简洁、易读的数据语言,广泛用于数据交换、文档储存和web开发;适合数据量大,不要求保留原有的数据类型。导入:import json&#xf…

使用JavaScript设计一款简单的数字时钟

本文目录 使用 JavaScript 设计一款带日期显示的数字时钟效果预览1. 项目概述2. HTML 结构代码说明 3. CSS 样式代码说明 4. JavaScript 逻辑代码说明 5. 运行效果 使用 JavaScript 设计一款带日期显示的数字时钟 本文将详细介绍如何使用 HTML、CSS 和 JavaScript 设计一款带日…

PPDock:复旦大学团队研发的蛋白质-配体“盲对接“技术

PPDock: Pocket Prediction-Based Protein−Ligand Blind Docking 发表于Journal of Chemical Information and Modeling,第一作者为 Jie Du,通讯作者为 Manning Wang,研究团队来自复旦大学。该研究提出一种新的基于口袋预测的蛋白质 - 配体盲…

VSCode C/C++ 开发环境完整配置及常见问题(自用)

这里主要记录了一些与配置相关的内容。由于网上教程众多,部分解决方法并不能完全契合我遇到的问题,因此我选择以自己偏好的方式,对 VSCode 进行完整的配置,并记录在使用过程中遇到的问题及解决方案。后续内容也会持续更新和完善。…

系统漏洞扫描服务:安全风险识别与防护指南

系统安全的关键在于漏洞扫描服务,此服务能迅速发现潜在的安全风险。借助专业的扫描工具和技术,它确保系统稳定运作。以下将简要介绍这一服务的主要特点。 扫描原理 系统漏洞扫描服务依赖两种主要手段:一是通过漏洞数据库进行匹配&#xff0…

MVC(Model-View-Controller)framework using Python ,Tkinter and SQLite

1.项目结构 sql: CREATE TABLE IF NOT EXISTS School (SchoolId TEXT not null, SchoolName TEXT NOT NULL,SchoolTelNo TEXT NOT NULL) 整体思路 Model:负责与 SQLite 数据库进行交互,包括创建表、插入、删除、更新和查询数据等操作。View&#xff1…

Xcode证书密钥导入

证书干嘛用 渠道定期会给xcode证书,用来给ios打包用,证书里面有记录哪些设备可以打包进去。 怎么换证书 先更新密钥 在钥匙串访问中,选择系统。(选登录也行,反正两个都要导入就是了)。 mac中双击所有 .p12 后缀的密钥&#xff…

【学习笔记】计算机网络(三)

第3章 数据链路层 文章目录 第3章 数据链路层3.1数据链路层的几个共同问题3.1.1 数据链路和帧3.1.2 三个基本功能3.1.3 其他功能 - 滑动窗口机制 3.2 点对点协议PPP(Point-to-Point Protocol)3.2.1 PPP 协议的特点3.2.2 PPP协议的帧格式3.2.3 PPP 协议的工作状态 3.3 使用广播信…